Welcome to Subscribe On Youtube
1201. Ugly Number III
Description
An ugly number is a positive integer that is divisible by a
, b
, or c
.
Given four integers n
, a
, b
, and c
, return the nth
ugly number.
Example 1:
Input: n = 3, a = 2, b = 3, c = 5 Output: 4 Explanation: The ugly numbers are 2, 3, 4, 5, 6, 8, 9, 10... The 3rd is 4.
Example 2:
Input: n = 4, a = 2, b = 3, c = 4 Output: 6 Explanation: The ugly numbers are 2, 3, 4, 6, 8, 9, 10, 12... The 4th is 6.
Example 3:
Input: n = 5, a = 2, b = 11, c = 13 Output: 10 Explanation: The ugly numbers are 2, 4, 6, 8, 10, 11, 12, 13... The 5th is 10.
Constraints:
1 <= n, a, b, c <= 109
1 <= a * b * c <= 1018
- It is guaranteed that the result will be in range
[1, 2 * 109]
.
Solutions
Solution 1: Binary Search + Inclusion-Exclusion Principle
We can transform the problem into: find the smallest positive integer $x$ such that the number of ugly numbers less than or equal to $x$ is exactly $n$.
For a positive integer $x$, there are $\left\lfloor \frac{x}{a} \right\rfloor$ numbers divisible by $a$, $\left\lfloor \frac{x}{b} \right\rfloor$ numbers divisible by $b$, $\left\lfloor \frac{x}{c} \right\rfloor$ numbers divisible by $c$, $\left\lfloor \frac{x}{lcm(a, b)} \right\rfloor$ numbers divisible by both $a$ and $b$, $\left\lfloor \frac{x}{lcm(a, c)} \right\rfloor$ numbers divisible by both $a$ and $c$, $\left\lfloor \frac{x}{lcm(b, c)} \right\rfloor$ numbers divisible by both $b$ and $c$, and $\left\lfloor \frac{x}{lcm(a, b, c)} \right\rfloor$ numbers divisible by $a$, $b$, and $c$ at the same time. According to the inclusion-exclusion principle, the number of ugly numbers less than or equal to $x$ is:
\[\left\lfloor \frac{x}{a} \right\rfloor + \left\lfloor \frac{x}{b} \right\rfloor + \left\lfloor \frac{x}{c} \right\rfloor - \left\lfloor \frac{x}{lcm(a, b)} \right\rfloor - \left\lfloor \frac{x}{lcm(a, c)} \right\rfloor - \left\lfloor \frac{x}{lcm(b, c)} \right\rfloor + \left\lfloor \frac{x}{lcm(a, b, c)} \right\rfloor\]We can use binary search to find the smallest positive integer $x$ such that the number of ugly numbers less than or equal to $x$ is exactly $n$.
Define the left boundary of binary search as $l=1$ and the right boundary as $r=2 \times 10^9$, where $2 \times 10^9$ is the maximum value given by the problem. In each step of binary search, we find the middle number $mid$. If the number of ugly numbers less than or equal to $mid$ is greater than or equal to $n$, it means that the smallest positive integer $x$ falls in the interval $[l,mid]$, otherwise it falls in the interval $[mid+1,r]$. During the binary search process, we need to continuously update the number of ugly numbers less than or equal to $mid$ until we find the smallest positive integer $x$.
The time complexity is $O(\log m)$, where $m = 2 \times 10^9$. The space complexity is $O(1)$.
-
class Solution { public int nthUglyNumber(int n, int a, int b, int c) { long ab = lcm(a, b); long bc = lcm(b, c); long ac = lcm(a, c); long abc = lcm(ab, c); long l = 1, r = 2000000000; while (l < r) { long mid = (l + r) >> 1; if (mid / a + mid / b + mid / c - mid / ab - mid / bc - mid / ac + mid / abc >= n) { r = mid; } else { l = mid + 1; } } return (int) l; } private long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } private long lcm(long a, long b) { return a * b / gcd(a, b); } }
-
class Solution { public: int nthUglyNumber(int n, int a, int b, int c) { long long ab = lcm(a, b); long long bc = lcm(b, c); long long ac = lcm(a, c); long long abc = lcm(ab, c); long long l = 1, r = 2000000000; while (l < r) { long long mid = (l + r) >> 1; if (mid / a + mid / b + mid / c - mid / ab - mid / bc - mid / ac + mid / abc >= n) { r = mid; } else { l = mid + 1; } } return l; } long long lcm(long long a, long long b) { return a * b / gcd(a, b); } long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } };
-
class Solution: def nthUglyNumber(self, n: int, a: int, b: int, c: int) -> int: ab = lcm(a, b) bc = lcm(b, c) ac = lcm(a, c) abc = lcm(a, b, c) l, r = 1, 2 * 10**9 while l < r: mid = (l + r) >> 1 if ( mid // a + mid // b + mid // c - mid // ab - mid // bc - mid // ac + mid // abc >= n ): r = mid else: l = mid + 1 return l
-
func nthUglyNumber(n int, a int, b int, c int) int { ab, bc, ac := lcm(a, b), lcm(b, c), lcm(a, c) abc := lcm(ab, c) var l, r int = 1, 2e9 for l < r { mid := (l + r) >> 1 if mid/a+mid/b+mid/c-mid/ab-mid/bc-mid/ac+mid/abc >= n { r = mid } else { l = mid + 1 } } return l } func gcd(a, b int) int { if b == 0 { return a } return gcd(b, a%b) } func lcm(a, b int) int { return a * b / gcd(a, b) }
-
function nthUglyNumber(n: number, a: number, b: number, c: number): number { const ab = lcm(BigInt(a), BigInt(b)); const bc = lcm(BigInt(b), BigInt(c)); const ac = lcm(BigInt(a), BigInt(c)); const abc = lcm(BigInt(a), bc); let l = 1n; let r = BigInt(2e9); while (l < r) { const mid = (l + r) >> 1n; const count = mid / BigInt(a) + mid / BigInt(b) + mid / BigInt(c) - mid / ab - mid / bc - mid / ac + mid / abc; if (count >= BigInt(n)) { r = mid; } else { l = mid + 1n; } } return Number(l); } function gcd(a: bigint, b: bigint): bigint { return b === 0n ? a : gcd(b, a % b); } function lcm(a: bigint, b: bigint): bigint { return (a * b) / gcd(a, b); }