Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/1172.html

1172. Dinner Plate Stacks

Level

Hard

Description

You have an infinite number of stacks arranged in a row and numbered (left to right) from 0, each of the stacks has the same maximum capacity.

Implement the DinnerPlates class:

  • DinnerPlates(int capacity) Initializes the object with the maximum capacity of the stacks.
  • void push(int val) pushes the given positive integer val into the leftmost stack with size less than capacity.
  • int pop() returns the value at the top of the rightmost non-empty stack and removes it from that stack, and returns -1 if all stacks are empty.
  • int popAtStack(int index) returns the value at the top of the stack with the given index and removes it from that stack, and returns -1 if the stack with that given index is empty.

Example:

Input: 
["DinnerPlates","push","push","push","push","push","popAtStack","push","push","popAtStack","popAtStack","pop","pop","pop","pop","pop"]
[[2],[1],[2],[3],[4],[5],[0],[20],[21],[0],[2],[],[],[],[],[]]
Output: 
[null,null,null,null,null,null,2,null,null,20,21,5,4,3,1,-1]

Explanation: 
DinnerPlates D = DinnerPlates(2);  // Initialize with capacity = 2
D.push(1);
D.push(2);
D.push(3);
D.push(4);
D.push(5);         // The stacks are now:  2  4
                                           1  3  5
                                           ﹈ ﹈ ﹈
D.popAtStack(0);   // Returns 2.  The stacks are now:     4
                                                       1  3  5
                                                       ﹈ ﹈ ﹈
D.push(20);        // The stacks are now: 20  4
                                           1  3  5
                                           ﹈ ﹈ ﹈
D.push(21);        // The stacks are now: 20  4 21
                                           1  3  5
                                           ﹈ ﹈ ﹈
D.popAtStack(0);   // Returns 20.  The stacks are now:     4 21
                                                        1  3  5
                                                        ﹈ ﹈ ﹈
D.popAtStack(2);   // Returns 21.  The stacks are now:     4
                                                        1  3  5
                                                        ﹈ ﹈ ﹈ 
D.pop()            // Returns 5.  The stacks are now:      4
                                                        1  3 
                                                        ﹈ ﹈  
D.pop()            // Returns 4.  The stacks are now:   1  3 
                                                        ﹈ ﹈   
D.pop()            // Returns 3.  The stacks are now:   1 
                                                        ﹈   
D.pop()            // Returns 1.  There are no stacks.
D.pop()            // Returns -1.  There are still no stacks.

Constraints:

  • 1 <= capacity <= 20000
  • 1 <= val <= 20000
  • 0 <= index <= 100000
  • At most 200000 calls will be made to push, pop, and popAtStack.

Solution

In the class, maintain capacity that is the capacity of each stack, a tree map that stores each index and the corresponding stack, a tree set that stores the indices of available stacks, and the current stack’s index.

For the constructor, initialize the fields, where the current stack’s index is initialized to 0.

For method push, check whether there is any element in the tree set. If so, obtain the minimum index from the tree set and the corresponding stack and add the element val to the stack, and remove the minimum index from the tree set if the stack becomes full. Otherwise, add the element val to the stack at the current stack’s index, and increase the current stack’s index by 1 if the stack becomes full.

For method pop, if the tree map does not have any entry, return -1. Otherwise, obtain the maximum index in the tree map and obtain the corresponding stack, and pop one element from the stack. Update the current stack’s index if the last stack is not full. Finally, return the popped element.

For method popAtIndex, first obtain the stack at the given index. If the stack is empty, return -1. Otherwise, pop one element from the stack, and update the current stack’s index if necessary or add the given index to the tree set if the given index is not equal to or adjacent to the current stack’s index. Finally, return the popped element.

  • class DinnerPlates {
        int capacity;
        TreeMap<Integer, Stack<Integer>> stackMap;
        TreeSet<Integer> availableStacks;
        int stackIndex;
    
        public DinnerPlates(int capacity) {
            this.capacity = capacity;
            stackMap = new TreeMap<Integer, Stack<Integer>>();
            availableStacks = new TreeSet<Integer>();
            stackIndex = 0;
        }
        
        public void push(int val) {
            if (availableStacks.isEmpty()) {
                Stack<Integer> stack = stackMap.getOrDefault(stackIndex, new Stack<Integer>());
                stack.push(val);
                stackMap.put(stackIndex, stack);
                if (stack.size() == capacity)
                    stackIndex++;
            } else {
                int index = availableStacks.first();
                Stack<Integer> stack = stackMap.getOrDefault(index, new Stack<Integer>());
                stack.push(val);
                stackMap.put(index, stack);
                if (stack.size() == capacity)
                    availableStacks.remove(index);
            }
        }
        
        public int pop() {
            if (stackMap.size() == 0)
                return -1;
            int lastKey = stackMap.lastKey();
            Stack<Integer> stack = stackMap.get(lastKey);
            int element = stack.pop();
            if (stack.isEmpty())
                stackMap.remove(lastKey);
            if (stackIndex - lastKey == 1)
                stackIndex = lastKey;
            return element;
        }
        
        public int popAtStack(int index) {
            Stack<Integer> stack = stackMap.getOrDefault(index, new Stack<Integer>());
            if (stack.isEmpty())
                return -1;
            else {
                int element = stack.pop();
                if (stack.isEmpty())
                    stackMap.remove(index);
                if (stackIndex - index == 1)
                    stackIndex = index;
                else if (stackIndex - index > 1)
                    availableStacks.add(index);
                return element;
            }
        }
    }
    
    /**
     * Your DinnerPlates object will be instantiated and called as such:
     * DinnerPlates obj = new DinnerPlates(capacity);
     * obj.push(val);
     * int param_2 = obj.pop();
     * int param_3 = obj.popAtStack(index);
     */
    
  • // OJ: https://leetcode.com/problems/dinner-plate-stacks/
    // Time:
    //      DinnerPlates: O(1)
    //      push: O(logN)
    //      pop: O(logN)
    //      popAtStack: (logN)
    // Space: O(N)
    class DinnerPlates {
        int capacity;
        vector<stack<int>> v;
        set<int> avail; // the last stack is not in avail
    public:
        DinnerPlates(int capacity) : capacity(capacity) {}
        void push(int val) {
            if (avail.size()) {
                int i = *avail.begin();
                v[i].push(val);
                if (v[i].size() == capacity) avail.erase(i);
            } else {
                if (v.empty() || v.back().size() == capacity) v.emplace_back();
                v.back().push(val);
            }
        }
        int pop() {
            while (v.size() && v.back().empty()) v.pop_back();
            if (v.empty()) return -1;
            int val = v.back().top();
            v.back().pop();
            if (v.back().empty()) {
                v.pop_back();
                if (avail.count(v.size() - 1)) avail.erase(v.size() - 1);
            }
            return val;
        }
        int popAtStack(int index) {
            if (index >= v.size() || v[index].empty()) return -1;
            if (index == v.size() - 1) return pop();
            int val = v[index].top();
            v[index].pop();
            avail.insert(index);
            return val;
        }
    };
    
  • from sortedcontainers import SortedSet
    
    
    class DinnerPlates:
        def __init__(self, capacity: int):
            self.capacity = capacity
            self.stacks = []
            self.not_full = SortedSet()
    
        def push(self, val: int) -> None:
            if not self.not_full:
                self.stacks.append([val])
                if self.capacity > 1:
                    self.not_full.add(len(self.stacks) - 1)
            else:
                index = self.not_full[0]
                self.stacks[index].append(val)
                if len(self.stacks[index]) == self.capacity:
                    self.not_full.discard(index)
    
        def pop(self) -> int:
            return self.popAtStack(len(self.stacks) - 1)
    
        def popAtStack(self, index: int) -> int:
            if index < 0 or index >= len(self.stacks) or not self.stacks[index]:
                return -1
            val = self.stacks[index].pop()
            if index == len(self.stacks) - 1 and not self.stacks[-1]:
                while self.stacks and not self.stacks[-1]:
                    self.not_full.discard(len(self.stacks) - 1)
                    self.stacks.pop()
            else:
                self.not_full.add(index)
            return val
    
    
    # Your DinnerPlates object will be instantiated and called as such:
    # obj = DinnerPlates(capacity)
    # obj.push(val)
    # param_2 = obj.pop()
    # param_3 = obj.popAtStack(index)
    
    
  • type DinnerPlates struct {
    	capacity int
    	stacks   [][]int
    	notFull  *redblacktree.Tree
    }
    
    func Constructor(capacity int) DinnerPlates {
    	return DinnerPlates{capacity: capacity, notFull: redblacktree.NewWithIntComparator()}
    }
    
    func (this *DinnerPlates) Push(val int) {
    	if this.notFull.Size() == 0 {
    		this.stacks = append(this.stacks, []int{val})
    		if this.capacity > 1 {
    			this.notFull.Put(len(this.stacks)-1, nil)
    		}
    	} else {
    		index, _ := this.notFull.Left().Key.(int)
    		this.stacks[index] = append(this.stacks[index], val)
    		if len(this.stacks[index]) == this.capacity {
    			this.notFull.Remove(index)
    		}
    	}
    }
    
    func (this *DinnerPlates) Pop() int {
    	return this.PopAtStack(len(this.stacks) - 1)
    }
    
    func (this *DinnerPlates) PopAtStack(index int) int {
    	if index < 0 || index >= len(this.stacks) || len(this.stacks[index]) == 0 {
    		return -1
    	}
    	val := this.stacks[index][len(this.stacks[index])-1]
    	this.stacks[index] = this.stacks[index][:len(this.stacks[index])-1]
    	if index == len(this.stacks)-1 && len(this.stacks[index]) == 0 {
    		for len(this.stacks) > 0 && len(this.stacks[len(this.stacks)-1]) == 0 {
    			this.notFull.Remove(len(this.stacks) - 1)
    			this.stacks = this.stacks[:len(this.stacks)-1]
    		}
    	} else {
    		this.notFull.Put(index, nil)
    	}
    	return val
    }
    
    /**
     * Your DinnerPlates object will be instantiated and called as such:
     * obj := Constructor(capacity);
     * obj.Push(val);
     * param_2 := obj.Pop();
     * param_3 := obj.PopAtStack(index);
     */
    
  • class DinnerPlates {
        capacity: number;
        stacks: number[][];
        notFull: TreeSet<number>;
    
        constructor(capacity: number) {
            this.capacity = capacity;
            this.stacks = [];
            this.notFull = new TreeSet<number>();
        }
    
        push(val: number): void {
            if (this.notFull.size() === 0) {
                this.stacks.push([val]);
                if (this.capacity > 1) {
                    this.notFull.add(this.stacks.length - 1);
                }
            } else {
                const index = this.notFull.first()!;
                this.stacks[index].push(val);
                if (this.stacks[index].length === this.capacity) {
                    this.notFull.delete(index);
                }
            }
        }
    
        pop(): number {
            return this.popAtStack(this.stacks.length - 1);
        }
    
        popAtStack(index: number): number {
            if (
                index < 0 ||
                index >= this.stacks.length ||
                this.stacks[index].length === 0
            ) {
                return -1;
            }
            const val = this.stacks[index].pop()!;
            if (
                index === this.stacks.length - 1 &&
                this.stacks[index].length === 0
            ) {
                while (
                    this.stacks.length > 0 &&
                    this.stacks[this.stacks.length - 1].length === 0
                ) {
                    this.notFull.delete(this.stacks.length - 1);
                    this.stacks.pop();
                }
            } else {
                this.notFull.add(index);
            }
            return val;
        }
    }
    
    type Compare<T> = (lhs: T, rhs: T) => number;
    
    class RBTreeNode<T = number> {
        data: T;
        count: number;
        left: RBTreeNode<T> | null;
        right: RBTreeNode<T> | null;
        parent: RBTreeNode<T> | null;
        color: number;
        constructor(data: T) {
            this.data = data;
            this.left = this.right = this.parent = null;
            this.color = 0;
            this.count = 1;
        }
    
        sibling(): RBTreeNode<T> | null {
            if (!this.parent) return null; // sibling null if no parent
            return this.isOnLeft() ? this.parent.right : this.parent.left;
        }
    
        isOnLeft(): boolean {
            return this === this.parent!.left;
        }
    
        hasRedChild(): boolean {
            return (
                Boolean(this.left && this.left.color === 0) ||
                Boolean(this.right && this.right.color === 0)
            );
        }
    }
    
    class RBTree<T> {
        root: RBTreeNode<T> | null;
        lt: (l: T, r: T) => boolean;
        constructor(
            compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
        ) {
            this.root = null;
            this.lt = (l: T, r: T) => compare(l, r) < 0;
        }
    
        rotateLeft(pt: RBTreeNode<T>): void {
            const right = pt.right!;
            pt.right = right.left;
    
            if (pt.right) pt.right.parent = pt;
            right.parent = pt.parent;
    
            if (!pt.parent) this.root = right;
            else if (pt === pt.parent.left) pt.parent.left = right;
            else pt.parent.right = right;
    
            right.left = pt;
            pt.parent = right;
        }
    
        rotateRight(pt: RBTreeNode<T>): void {
            const left = pt.left!;
            pt.left = left.right;
    
            if (pt.left) pt.left.parent = pt;
            left.parent = pt.parent;
    
            if (!pt.parent) this.root = left;
            else if (pt === pt.parent.left) pt.parent.left = left;
            else pt.parent.right = left;
    
            left.right = pt;
            pt.parent = left;
        }
    
        swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
            const tmp = p1.color;
            p1.color = p2.color;
            p2.color = tmp;
        }
    
        swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
            const tmp = p1.data;
            p1.data = p2.data;
            p2.data = tmp;
        }
    
        fixAfterInsert(pt: RBTreeNode<T>): void {
            let parent = null;
            let grandParent = null;
    
            while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
                parent = pt.parent;
                grandParent = pt.parent.parent;
    
                /*  Case : A
                    Parent of pt is left child of Grand-parent of pt */
                if (parent === grandParent?.left) {
                    const uncle = grandParent.right;
    
                    /* Case : 1
                       The uncle of pt is also red
                       Only Recoloring required */
                    if (uncle && uncle.color === 0) {
                        grandParent.color = 0;
                        parent.color = 1;
                        uncle.color = 1;
                        pt = grandParent;
                    } else {
                        /* Case : 2
                           pt is right child of its parent
                           Left-rotation required */
                        if (pt === parent.right) {
                            this.rotateLeft(parent);
                            pt = parent;
                            parent = pt.parent;
                        }
    
                        /* Case : 3
                           pt is left child of its parent
                           Right-rotation required */
                        this.rotateRight(grandParent);
                        this.swapColor(parent!, grandParent);
                        pt = parent!;
                    }
                } else {
                    /* Case : B
                   Parent of pt is right child of Grand-parent of pt */
                    const uncle = grandParent!.left;
    
                    /*  Case : 1
                        The uncle of pt is also red
                        Only Recoloring required */
                    if (uncle != null && uncle.color === 0) {
                        grandParent!.color = 0;
                        parent.color = 1;
                        uncle.color = 1;
                        pt = grandParent!;
                    } else {
                        /* Case : 2
                           pt is left child of its parent
                           Right-rotation required */
                        if (pt === parent.left) {
                            this.rotateRight(parent);
                            pt = parent;
                            parent = pt.parent;
                        }
    
                        /* Case : 3
                           pt is right child of its parent
                           Left-rotation required */
                        this.rotateLeft(grandParent!);
                        this.swapColor(parent!, grandParent!);
                        pt = parent!;
                    }
                }
            }
            this.root!.color = 1;
        }
    
        delete(val: T): boolean {
            const node = this.find(val);
            if (!node) return false;
            node.count--;
            if (!node.count) this.deleteNode(node);
            return true;
        }
    
        deleteAll(val: T): boolean {
            const node = this.find(val);
            if (!node) return false;
            this.deleteNode(node);
            return true;
        }
    
        deleteNode(v: RBTreeNode<T>): void {
            const u = BSTreplace(v);
    
            // True when u and v are both black
            const uvBlack = (u === null || u.color === 1) && v.color === 1;
            const parent = v.parent!;
    
            if (!u) {
                // u is null therefore v is leaf
                if (v === this.root) this.root = null;
                // v is root, making root null
                else {
                    if (uvBlack) {
                        // u and v both black
                        // v is leaf, fix double black at v
                        this.fixDoubleBlack(v);
                    } else {
                        // u or v is red
                        if (v.sibling()) {
                            // sibling is not null, make it red"
                            v.sibling()!.color = 0;
                        }
                    }
                    // delete v from the tree
                    if (v.isOnLeft()) parent.left = null;
                    else parent.right = null;
                }
                return;
            }
    
            if (!v.left || !v.right) {
                // v has 1 child
                if (v === this.root) {
                    // v is root, assign the value of u to v, and delete u
                    v.data = u.data;
                    v.left = v.right = null;
                } else {
                    // Detach v from tree and move u up
                    if (v.isOnLeft()) parent.left = u;
                    else parent.right = u;
                    u.parent = parent;
                    if (uvBlack) this.fixDoubleBlack(u);
                    // u and v both black, fix double black at u
                    else u.color = 1; // u or v red, color u black
                }
                return;
            }
    
            // v has 2 children, swap data with successor and recurse
            this.swapData(u, v);
            this.deleteNode(u);
    
            // find node that replaces a deleted node in BST
            function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
                // when node have 2 children
                if (x.left && x.right) return successor(x.right);
                // when leaf
                if (!x.left && !x.right) return null;
                // when single child
                return x.left ?? x.right;
            }
            // find node that do not have a left child
            // in the subtree of the given node
            function successor(x: RBTreeNode<T>): RBTreeNode<T> {
                let temp = x;
                while (temp.left) temp = temp.left;
                return temp;
            }
        }
    
        fixDoubleBlack(x: RBTreeNode<T>): void {
            if (x === this.root) return; // Reached root
    
            const sibling = x.sibling();
            const parent = x.parent!;
            if (!sibling) {
                // No sibiling, double black pushed up
                this.fixDoubleBlack(parent);
            } else {
                if (sibling.color === 0) {
                    // Sibling red
                    parent.color = 0;
                    sibling.color = 1;
                    if (sibling.isOnLeft()) this.rotateRight(parent);
                    // left case
                    else this.rotateLeft(parent); // right case
                    this.fixDoubleBlack(x);
                } else {
                    // Sibling black
                    if (sibling.hasRedChild()) {
                        // at least 1 red children
                        if (sibling.left && sibling.left.color === 0) {
                            if (sibling.isOnLeft()) {
                                // left left
                                sibling.left.color = sibling.color;
                                sibling.color = parent.color;
                                this.rotateRight(parent);
                            } else {
                                // right left
                                sibling.left.color = parent.color;
                                this.rotateRight(sibling);
                                this.rotateLeft(parent);
                            }
                        } else {
                            if (sibling.isOnLeft()) {
                                // left right
                                sibling.right!.color = parent.color;
                                this.rotateLeft(sibling);
                                this.rotateRight(parent);
                            } else {
                                // right right
                                sibling.right!.color = sibling.color;
                                sibling.color = parent.color;
                                this.rotateLeft(parent);
                            }
                        }
                        parent.color = 1;
                    } else {
                        // 2 black children
                        sibling.color = 0;
                        if (parent.color === 1) this.fixDoubleBlack(parent);
                        else parent.color = 1;
                    }
                }
            }
        }
    
        insert(data: T): boolean {
            // search for a position to insert
            let parent = this.root;
            while (parent) {
                if (this.lt(data, parent.data)) {
                    if (!parent.left) break;
                    else parent = parent.left;
                } else if (this.lt(parent.data, data)) {
                    if (!parent.right) break;
                    else parent = parent.right;
                } else break;
            }
    
            // insert node into parent
            const node = new RBTreeNode(data);
            if (!parent) this.root = node;
            else if (this.lt(node.data, parent.data)) parent.left = node;
            else if (this.lt(parent.data, node.data)) parent.right = node;
            else {
                parent.count++;
                return false;
            }
            node.parent = parent;
            this.fixAfterInsert(node);
            return true;
        }
    
        find(data: T): RBTreeNode<T> | null {
            let p = this.root;
            while (p) {
                if (this.lt(data, p.data)) {
                    p = p.left;
                } else if (this.lt(p.data, data)) {
                    p = p.right;
                } else break;
            }
            return p ?? null;
        }
    
        *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
            if (!root) return;
            for (const v of this.inOrder(root.left!)) yield v;
            yield root.data;
            for (const v of this.inOrder(root.right!)) yield v;
        }
    
        *reverseInOrder(
            root: RBTreeNode<T> = this.root!,
        ): Generator<T, undefined, void> {
            if (!root) return;
            for (const v of this.reverseInOrder(root.right!)) yield v;
            yield root.data;
            for (const v of this.reverseInOrder(root.left!)) yield v;
        }
    }
    
    class TreeSet<T = number> {
        _size: number;
        tree: RBTree<T>;
        compare: Compare<T>;
        constructor(
            collection: T[] | Compare<T> = [],
            compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
        ) {
            if (typeof collection === 'function') {
                compare = collection;
                collection = [];
            }
            this._size = 0;
            this.compare = compare;
            this.tree = new RBTree(compare);
            for (const val of collection) this.add(val);
        }
    
        size(): number {
            return this._size;
        }
    
        has(val: T): boolean {
            return !!this.tree.find(val);
        }
    
        add(val: T): boolean {
            const successful = this.tree.insert(val);
            this._size += successful ? 1 : 0;
            return successful;
        }
    
        delete(val: T): boolean {
            const deleted = this.tree.deleteAll(val);
            this._size -= deleted ? 1 : 0;
            return deleted;
        }
    
        ceil(val: T): T | undefined {
            let p = this.tree.root;
            let higher = null;
            while (p) {
                if (this.compare(p.data, val) >= 0) {
                    higher = p;
                    p = p.left;
                } else {
                    p = p.right;
                }
            }
            return higher?.data;
        }
    
        floor(val: T): T | undefined {
            let p = this.tree.root;
            let lower = null;
            while (p) {
                if (this.compare(val, p.data) >= 0) {
                    lower = p;
                    p = p.right;
                } else {
                    p = p.left;
                }
            }
            return lower?.data;
        }
    
        higher(val: T): T | undefined {
            let p = this.tree.root;
            let higher = null;
            while (p) {
                if (this.compare(val, p.data) < 0) {
                    higher = p;
                    p = p.left;
                } else {
                    p = p.right;
                }
            }
            return higher?.data;
        }
    
        lower(val: T): T | undefined {
            let p = this.tree.root;
            let lower = null;
            while (p) {
                if (this.compare(p.data, val) < 0) {
                    lower = p;
                    p = p.right;
                } else {
                    p = p.left;
                }
            }
            return lower?.data;
        }
    
        first(): T | undefined {
            return this.tree.inOrder().next().value;
        }
    
        last(): T | undefined {
            return this.tree.reverseInOrder().next().value;
        }
    
        shift(): T | undefined {
            const first = this.first();
            if (first === undefined) return undefined;
            this.delete(first);
            return first;
        }
    
        pop(): T | undefined {
            const last = this.last();
            if (last === undefined) return undefined;
            this.delete(last);
            return last;
        }
    
        *[Symbol.iterator](): Generator<T, void, void> {
            for (const val of this.values()) yield val;
        }
    
        *keys(): Generator<T, void, void> {
            for (const val of this.values()) yield val;
        }
    
        *values(): Generator<T, undefined, void> {
            for (const val of this.tree.inOrder()) yield val;
            return undefined;
        }
    
        /**
         * Return a generator for reverse order traversing the set
         */
        *rvalues(): Generator<T, undefined, void> {
            for (const val of this.tree.reverseInOrder()) yield val;
            return undefined;
        }
    }
    
    /**
     * Your DinnerPlates object will be instantiated and called as such:
     * var obj = new DinnerPlates(capacity)
     * obj.push(val)
     * var param_2 = obj.pop()
     * var param_3 = obj.popAtStack(index)
     */
    
    

All Problems

All Solutions