Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/1172.html
1172. Dinner Plate Stacks
Level
Hard
Description
You have an infinite number of stacks arranged in a row and numbered (left to right) from 0, each of the stacks has the same maximum capacity
.
Implement the DinnerPlates
class:
DinnerPlates(int capacity)
Initializes the object with the maximum capacity of the stacks.void push(int val)
pushes the given positive integer val into the leftmost stack with size less than capacity.int pop()
returns the value at the top of the rightmost non-empty stack and removes it from that stack, and returns-1
if all stacks are empty.int popAtStack(int index)
returns the value at the top of the stack with the givenindex
and removes it from that stack, and returns-1
if the stack with that givenindex
is empty.
Example:
Input:
["DinnerPlates","push","push","push","push","push","popAtStack","push","push","popAtStack","popAtStack","pop","pop","pop","pop","pop"]
[[2],[1],[2],[3],[4],[5],[0],[20],[21],[0],[2],[],[],[],[],[]]
Output:
[null,null,null,null,null,null,2,null,null,20,21,5,4,3,1,-1]
Explanation:
DinnerPlates D = DinnerPlates(2); // Initialize with capacity = 2
D.push(1);
D.push(2);
D.push(3);
D.push(4);
D.push(5); // The stacks are now: 2 4
1 3 5
﹈ ﹈ ﹈
D.popAtStack(0); // Returns 2. The stacks are now: 4
1 3 5
﹈ ﹈ ﹈
D.push(20); // The stacks are now: 20 4
1 3 5
﹈ ﹈ ﹈
D.push(21); // The stacks are now: 20 4 21
1 3 5
﹈ ﹈ ﹈
D.popAtStack(0); // Returns 20. The stacks are now: 4 21
1 3 5
﹈ ﹈ ﹈
D.popAtStack(2); // Returns 21. The stacks are now: 4
1 3 5
﹈ ﹈ ﹈
D.pop() // Returns 5. The stacks are now: 4
1 3
﹈ ﹈
D.pop() // Returns 4. The stacks are now: 1 3
﹈ ﹈
D.pop() // Returns 3. The stacks are now: 1
﹈
D.pop() // Returns 1. There are no stacks.
D.pop() // Returns -1. There are still no stacks.
Constraints:
1 <= capacity <= 20000
1 <= val <= 20000
0 <= index <= 100000
- At most
200000
calls will be made topush
,pop
, andpopAtStack
.
Solution
In the class, maintain capacity
that is the capacity of each stack, a tree map that stores each index and the corresponding stack, a tree set that stores the indices of available stacks, and the current stack’s index.
For the constructor, initialize the fields, where the current stack’s index is initialized to 0.
For method push
, check whether there is any element in the tree set. If so, obtain the minimum index from the tree set and the corresponding stack and add the element val
to the stack, and remove the minimum index from the tree set if the stack becomes full. Otherwise, add the element val
to the stack at the current stack’s index, and increase the current stack’s index by 1 if the stack becomes full.
For method pop
, if the tree map does not have any entry, return -1. Otherwise, obtain the maximum index in the tree map and obtain the corresponding stack, and pop one element from the stack. Update the current stack’s index if the last stack is not full. Finally, return the popped element.
For method popAtIndex
, first obtain the stack at the given index. If the stack is empty, return -1. Otherwise, pop one element from the stack, and update the current stack’s index if necessary or add the given index to the tree set if the given index is not equal to or adjacent to the current stack’s index. Finally, return the popped element.
-
class DinnerPlates { int capacity; TreeMap<Integer, Stack<Integer>> stackMap; TreeSet<Integer> availableStacks; int stackIndex; public DinnerPlates(int capacity) { this.capacity = capacity; stackMap = new TreeMap<Integer, Stack<Integer>>(); availableStacks = new TreeSet<Integer>(); stackIndex = 0; } public void push(int val) { if (availableStacks.isEmpty()) { Stack<Integer> stack = stackMap.getOrDefault(stackIndex, new Stack<Integer>()); stack.push(val); stackMap.put(stackIndex, stack); if (stack.size() == capacity) stackIndex++; } else { int index = availableStacks.first(); Stack<Integer> stack = stackMap.getOrDefault(index, new Stack<Integer>()); stack.push(val); stackMap.put(index, stack); if (stack.size() == capacity) availableStacks.remove(index); } } public int pop() { if (stackMap.size() == 0) return -1; int lastKey = stackMap.lastKey(); Stack<Integer> stack = stackMap.get(lastKey); int element = stack.pop(); if (stack.isEmpty()) stackMap.remove(lastKey); if (stackIndex - lastKey == 1) stackIndex = lastKey; return element; } public int popAtStack(int index) { Stack<Integer> stack = stackMap.getOrDefault(index, new Stack<Integer>()); if (stack.isEmpty()) return -1; else { int element = stack.pop(); if (stack.isEmpty()) stackMap.remove(index); if (stackIndex - index == 1) stackIndex = index; else if (stackIndex - index > 1) availableStacks.add(index); return element; } } } /** * Your DinnerPlates object will be instantiated and called as such: * DinnerPlates obj = new DinnerPlates(capacity); * obj.push(val); * int param_2 = obj.pop(); * int param_3 = obj.popAtStack(index); */
-
// OJ: https://leetcode.com/problems/dinner-plate-stacks/ // Time: // DinnerPlates: O(1) // push: O(logN) // pop: O(logN) // popAtStack: (logN) // Space: O(N) class DinnerPlates { int capacity; vector<stack<int>> v; set<int> avail; // the last stack is not in avail public: DinnerPlates(int capacity) : capacity(capacity) {} void push(int val) { if (avail.size()) { int i = *avail.begin(); v[i].push(val); if (v[i].size() == capacity) avail.erase(i); } else { if (v.empty() || v.back().size() == capacity) v.emplace_back(); v.back().push(val); } } int pop() { while (v.size() && v.back().empty()) v.pop_back(); if (v.empty()) return -1; int val = v.back().top(); v.back().pop(); if (v.back().empty()) { v.pop_back(); if (avail.count(v.size() - 1)) avail.erase(v.size() - 1); } return val; } int popAtStack(int index) { if (index >= v.size() || v[index].empty()) return -1; if (index == v.size() - 1) return pop(); int val = v[index].top(); v[index].pop(); avail.insert(index); return val; } };
-
from sortedcontainers import SortedSet class DinnerPlates: def __init__(self, capacity: int): self.capacity = capacity self.stacks = [] self.not_full = SortedSet() def push(self, val: int) -> None: if not self.not_full: self.stacks.append([val]) if self.capacity > 1: self.not_full.add(len(self.stacks) - 1) else: index = self.not_full[0] self.stacks[index].append(val) if len(self.stacks[index]) == self.capacity: self.not_full.discard(index) def pop(self) -> int: return self.popAtStack(len(self.stacks) - 1) def popAtStack(self, index: int) -> int: if index < 0 or index >= len(self.stacks) or not self.stacks[index]: return -1 val = self.stacks[index].pop() if index == len(self.stacks) - 1 and not self.stacks[-1]: while self.stacks and not self.stacks[-1]: self.not_full.discard(len(self.stacks) - 1) self.stacks.pop() else: self.not_full.add(index) return val # Your DinnerPlates object will be instantiated and called as such: # obj = DinnerPlates(capacity) # obj.push(val) # param_2 = obj.pop() # param_3 = obj.popAtStack(index)
-
type DinnerPlates struct { capacity int stacks [][]int notFull *redblacktree.Tree } func Constructor(capacity int) DinnerPlates { return DinnerPlates{capacity: capacity, notFull: redblacktree.NewWithIntComparator()} } func (this *DinnerPlates) Push(val int) { if this.notFull.Size() == 0 { this.stacks = append(this.stacks, []int{val}) if this.capacity > 1 { this.notFull.Put(len(this.stacks)-1, nil) } } else { index, _ := this.notFull.Left().Key.(int) this.stacks[index] = append(this.stacks[index], val) if len(this.stacks[index]) == this.capacity { this.notFull.Remove(index) } } } func (this *DinnerPlates) Pop() int { return this.PopAtStack(len(this.stacks) - 1) } func (this *DinnerPlates) PopAtStack(index int) int { if index < 0 || index >= len(this.stacks) || len(this.stacks[index]) == 0 { return -1 } val := this.stacks[index][len(this.stacks[index])-1] this.stacks[index] = this.stacks[index][:len(this.stacks[index])-1] if index == len(this.stacks)-1 && len(this.stacks[index]) == 0 { for len(this.stacks) > 0 && len(this.stacks[len(this.stacks)-1]) == 0 { this.notFull.Remove(len(this.stacks) - 1) this.stacks = this.stacks[:len(this.stacks)-1] } } else { this.notFull.Put(index, nil) } return val } /** * Your DinnerPlates object will be instantiated and called as such: * obj := Constructor(capacity); * obj.Push(val); * param_2 := obj.Pop(); * param_3 := obj.PopAtStack(index); */
-
class DinnerPlates { capacity: number; stacks: number[][]; notFull: TreeSet<number>; constructor(capacity: number) { this.capacity = capacity; this.stacks = []; this.notFull = new TreeSet<number>(); } push(val: number): void { if (this.notFull.size() === 0) { this.stacks.push([val]); if (this.capacity > 1) { this.notFull.add(this.stacks.length - 1); } } else { const index = this.notFull.first()!; this.stacks[index].push(val); if (this.stacks[index].length === this.capacity) { this.notFull.delete(index); } } } pop(): number { return this.popAtStack(this.stacks.length - 1); } popAtStack(index: number): number { if ( index < 0 || index >= this.stacks.length || this.stacks[index].length === 0 ) { return -1; } const val = this.stacks[index].pop()!; if ( index === this.stacks.length - 1 && this.stacks[index].length === 0 ) { while ( this.stacks.length > 0 && this.stacks[this.stacks.length - 1].length === 0 ) { this.notFull.delete(this.stacks.length - 1); this.stacks.pop(); } } else { this.notFull.add(index); } return val; } } type Compare<T> = (lhs: T, rhs: T) => number; class RBTreeNode<T = number> { data: T; count: number; left: RBTreeNode<T> | null; right: RBTreeNode<T> | null; parent: RBTreeNode<T> | null; color: number; constructor(data: T) { this.data = data; this.left = this.right = this.parent = null; this.color = 0; this.count = 1; } sibling(): RBTreeNode<T> | null { if (!this.parent) return null; // sibling null if no parent return this.isOnLeft() ? this.parent.right : this.parent.left; } isOnLeft(): boolean { return this === this.parent!.left; } hasRedChild(): boolean { return ( Boolean(this.left && this.left.color === 0) || Boolean(this.right && this.right.color === 0) ); } } class RBTree<T> { root: RBTreeNode<T> | null; lt: (l: T, r: T) => boolean; constructor( compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0), ) { this.root = null; this.lt = (l: T, r: T) => compare(l, r) < 0; } rotateLeft(pt: RBTreeNode<T>): void { const right = pt.right!; pt.right = right.left; if (pt.right) pt.right.parent = pt; right.parent = pt.parent; if (!pt.parent) this.root = right; else if (pt === pt.parent.left) pt.parent.left = right; else pt.parent.right = right; right.left = pt; pt.parent = right; } rotateRight(pt: RBTreeNode<T>): void { const left = pt.left!; pt.left = left.right; if (pt.left) pt.left.parent = pt; left.parent = pt.parent; if (!pt.parent) this.root = left; else if (pt === pt.parent.left) pt.parent.left = left; else pt.parent.right = left; left.right = pt; pt.parent = left; } swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void { const tmp = p1.color; p1.color = p2.color; p2.color = tmp; } swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void { const tmp = p1.data; p1.data = p2.data; p2.data = tmp; } fixAfterInsert(pt: RBTreeNode<T>): void { let parent = null; let grandParent = null; while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) { parent = pt.parent; grandParent = pt.parent.parent; /* Case : A Parent of pt is left child of Grand-parent of pt */ if (parent === grandParent?.left) { const uncle = grandParent.right; /* Case : 1 The uncle of pt is also red Only Recoloring required */ if (uncle && uncle.color === 0) { grandParent.color = 0; parent.color = 1; uncle.color = 1; pt = grandParent; } else { /* Case : 2 pt is right child of its parent Left-rotation required */ if (pt === parent.right) { this.rotateLeft(parent); pt = parent; parent = pt.parent; } /* Case : 3 pt is left child of its parent Right-rotation required */ this.rotateRight(grandParent); this.swapColor(parent!, grandParent); pt = parent!; } } else { /* Case : B Parent of pt is right child of Grand-parent of pt */ const uncle = grandParent!.left; /* Case : 1 The uncle of pt is also red Only Recoloring required */ if (uncle != null && uncle.color === 0) { grandParent!.color = 0; parent.color = 1; uncle.color = 1; pt = grandParent!; } else { /* Case : 2 pt is left child of its parent Right-rotation required */ if (pt === parent.left) { this.rotateRight(parent); pt = parent; parent = pt.parent; } /* Case : 3 pt is right child of its parent Left-rotation required */ this.rotateLeft(grandParent!); this.swapColor(parent!, grandParent!); pt = parent!; } } } this.root!.color = 1; } delete(val: T): boolean { const node = this.find(val); if (!node) return false; node.count--; if (!node.count) this.deleteNode(node); return true; } deleteAll(val: T): boolean { const node = this.find(val); if (!node) return false; this.deleteNode(node); return true; } deleteNode(v: RBTreeNode<T>): void { const u = BSTreplace(v); // True when u and v are both black const uvBlack = (u === null || u.color === 1) && v.color === 1; const parent = v.parent!; if (!u) { // u is null therefore v is leaf if (v === this.root) this.root = null; // v is root, making root null else { if (uvBlack) { // u and v both black // v is leaf, fix double black at v this.fixDoubleBlack(v); } else { // u or v is red if (v.sibling()) { // sibling is not null, make it red" v.sibling()!.color = 0; } } // delete v from the tree if (v.isOnLeft()) parent.left = null; else parent.right = null; } return; } if (!v.left || !v.right) { // v has 1 child if (v === this.root) { // v is root, assign the value of u to v, and delete u v.data = u.data; v.left = v.right = null; } else { // Detach v from tree and move u up if (v.isOnLeft()) parent.left = u; else parent.right = u; u.parent = parent; if (uvBlack) this.fixDoubleBlack(u); // u and v both black, fix double black at u else u.color = 1; // u or v red, color u black } return; } // v has 2 children, swap data with successor and recurse this.swapData(u, v); this.deleteNode(u); // find node that replaces a deleted node in BST function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null { // when node have 2 children if (x.left && x.right) return successor(x.right); // when leaf if (!x.left && !x.right) return null; // when single child return x.left ?? x.right; } // find node that do not have a left child // in the subtree of the given node function successor(x: RBTreeNode<T>): RBTreeNode<T> { let temp = x; while (temp.left) temp = temp.left; return temp; } } fixDoubleBlack(x: RBTreeNode<T>): void { if (x === this.root) return; // Reached root const sibling = x.sibling(); const parent = x.parent!; if (!sibling) { // No sibiling, double black pushed up this.fixDoubleBlack(parent); } else { if (sibling.color === 0) { // Sibling red parent.color = 0; sibling.color = 1; if (sibling.isOnLeft()) this.rotateRight(parent); // left case else this.rotateLeft(parent); // right case this.fixDoubleBlack(x); } else { // Sibling black if (sibling.hasRedChild()) { // at least 1 red children if (sibling.left && sibling.left.color === 0) { if (sibling.isOnLeft()) { // left left sibling.left.color = sibling.color; sibling.color = parent.color; this.rotateRight(parent); } else { // right left sibling.left.color = parent.color; this.rotateRight(sibling); this.rotateLeft(parent); } } else { if (sibling.isOnLeft()) { // left right sibling.right!.color = parent.color; this.rotateLeft(sibling); this.rotateRight(parent); } else { // right right sibling.right!.color = sibling.color; sibling.color = parent.color; this.rotateLeft(parent); } } parent.color = 1; } else { // 2 black children sibling.color = 0; if (parent.color === 1) this.fixDoubleBlack(parent); else parent.color = 1; } } } } insert(data: T): boolean { // search for a position to insert let parent = this.root; while (parent) { if (this.lt(data, parent.data)) { if (!parent.left) break; else parent = parent.left; } else if (this.lt(parent.data, data)) { if (!parent.right) break; else parent = parent.right; } else break; } // insert node into parent const node = new RBTreeNode(data); if (!parent) this.root = node; else if (this.lt(node.data, parent.data)) parent.left = node; else if (this.lt(parent.data, node.data)) parent.right = node; else { parent.count++; return false; } node.parent = parent; this.fixAfterInsert(node); return true; } find(data: T): RBTreeNode<T> | null { let p = this.root; while (p) { if (this.lt(data, p.data)) { p = p.left; } else if (this.lt(p.data, data)) { p = p.right; } else break; } return p ?? null; } *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> { if (!root) return; for (const v of this.inOrder(root.left!)) yield v; yield root.data; for (const v of this.inOrder(root.right!)) yield v; } *reverseInOrder( root: RBTreeNode<T> = this.root!, ): Generator<T, undefined, void> { if (!root) return; for (const v of this.reverseInOrder(root.right!)) yield v; yield root.data; for (const v of this.reverseInOrder(root.left!)) yield v; } } class TreeSet<T = number> { _size: number; tree: RBTree<T>; compare: Compare<T>; constructor( collection: T[] | Compare<T> = [], compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0), ) { if (typeof collection === 'function') { compare = collection; collection = []; } this._size = 0; this.compare = compare; this.tree = new RBTree(compare); for (const val of collection) this.add(val); } size(): number { return this._size; } has(val: T): boolean { return !!this.tree.find(val); } add(val: T): boolean { const successful = this.tree.insert(val); this._size += successful ? 1 : 0; return successful; } delete(val: T): boolean { const deleted = this.tree.deleteAll(val); this._size -= deleted ? 1 : 0; return deleted; } ceil(val: T): T | undefined { let p = this.tree.root; let higher = null; while (p) { if (this.compare(p.data, val) >= 0) { higher = p; p = p.left; } else { p = p.right; } } return higher?.data; } floor(val: T): T | undefined { let p = this.tree.root; let lower = null; while (p) { if (this.compare(val, p.data) >= 0) { lower = p; p = p.right; } else { p = p.left; } } return lower?.data; } higher(val: T): T | undefined { let p = this.tree.root; let higher = null; while (p) { if (this.compare(val, p.data) < 0) { higher = p; p = p.left; } else { p = p.right; } } return higher?.data; } lower(val: T): T | undefined { let p = this.tree.root; let lower = null; while (p) { if (this.compare(p.data, val) < 0) { lower = p; p = p.right; } else { p = p.left; } } return lower?.data; } first(): T | undefined { return this.tree.inOrder().next().value; } last(): T | undefined { return this.tree.reverseInOrder().next().value; } shift(): T | undefined { const first = this.first(); if (first === undefined) return undefined; this.delete(first); return first; } pop(): T | undefined { const last = this.last(); if (last === undefined) return undefined; this.delete(last); return last; } *[Symbol.iterator](): Generator<T, void, void> { for (const val of this.values()) yield val; } *keys(): Generator<T, void, void> { for (const val of this.values()) yield val; } *values(): Generator<T, undefined, void> { for (const val of this.tree.inOrder()) yield val; return undefined; } /** * Return a generator for reverse order traversing the set */ *rvalues(): Generator<T, undefined, void> { for (const val of this.tree.reverseInOrder()) yield val; return undefined; } } /** * Your DinnerPlates object will be instantiated and called as such: * var obj = new DinnerPlates(capacity) * obj.push(val) * var param_2 = obj.pop() * var param_3 = obj.popAtStack(index) */