Welcome to Subscribe On Youtube

1137. N-th Tribonacci Number

Description

The Tribonacci sequence Tn is defined as follows: 

T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + Tn+1 + Tn+2 for n >= 0.

Given n, return the value of Tn.

 

Example 1:

Input: n = 4
Output: 4
Explanation:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

Example 2:

Input: n = 25
Output: 1389537

 

Constraints:

  • 0 <= n <= 37
  • The answer is guaranteed to fit within a 32-bit integer, ie. answer <= 2^31 - 1.

Solutions

Solution 1: Dynamic Programming

According to the recurrence relation given in the problem, we can use dynamic programming to solve it.

We define three variables $a$, $b$, $c$ to represent $T_{n-3}$, $T_{n-2}$, $T_{n-1}$, respectively, with initial values of $0$, $1$, $1$.

Then we decrease $n$ to $0$, updating the values of $a$, $b$, $c$ each time, until $n$ is $0$, at which point the answer is $a$.

The time complexity is $O(n)$, and the space complexity is $O(1)$. Here, $n$ is the given integer.

Solution 2: Matrix Exponentiation to Accelerate Recurrence

We define $Tib(n)$ as a $1 \times 3$ matrix $\begin{bmatrix} T_n & T_{n - 1} & T_{n - 2} \end{bmatrix}$, where $T_n$, $T_{n - 1}$ and $T_{n - 2}$ represent the $n$th, $(n - 1)$th and $(n - 2)$th Tribonacci numbers, respectively.

We hope to derive $Tib(n)$ from $Tib(n-1) = \begin{bmatrix} T_{n - 1} & T_{n - 2} & T_{n - 3} \end{bmatrix}$. That is, we need a matrix $base$ such that $Tib(n - 1) \times base = Tib(n)$, i.e.,

\[\begin{bmatrix} T_{n - 1} & T_{n - 2} & T_{n - 3} \end{bmatrix} \times base = \begin{bmatrix} T_n & T_{n - 1} & T_{n - 2} \end{bmatrix}\]

Since $T_n = T_{n - 1} + T_{n - 2} + T_{n - 3}$, the matrix $base$ is:

\[\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}\]

We define the initial matrix $res = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$, then $T_n$ is equal to the sum of all elements in the result matrix of $res$ multiplied by $base^{n - 3}$. This can be solved using matrix exponentiation.

The time complexity is $O(\log n)$, and the space complexity is $O(1)$.

  • class Solution {
        public int tribonacci(int n) {
            int a = 0, b = 1, c = 1;
            while (n-- > 0) {
                int d = a + b + c;
                a = b;
                b = c;
                c = d;
            }
            return a;
        }
    }
    
  • class Solution {
    public:
        int tribonacci(int n) {
            long long a = 0, b = 1, c = 1;
            while (n--) {
                long long d = a + b + c;
                a = b;
                b = c;
                c = d;
            }
            return (int) a;
        }
    };
    
  • class Solution:
        def tribonacci(self, n: int) -> int:
            a, b, c = 0, 1, 1
            for _ in range(n):
                a, b, c = b, c, a + b + c
            return a
    
    
  • func tribonacci(n int) int {
    	a, b, c := 0, 1, 1
    	for i := 0; i < n; i++ {
    		a, b, c = b, c, a+b+c
    	}
    	return a
    }
    
  • function tribonacci(n: number): number {
        if (n === 0) {
            return 0;
        }
        if (n < 3) {
            return 1;
        }
        const a = [
            [1, 1, 0],
            [1, 0, 1],
            [1, 0, 0],
        ];
        return pow(a, n - 3)[0].reduce((a, b) => a + b);
    }
    
    function mul(a: number[][], b: number[][]): number[][] {
        const [m, n] = [a.length, b[0].length];
        const c = Array.from({ length: m }, () => Array.from({ length: n }, () => 0));
        for (let i = 0; i < m; ++i) {
            for (let j = 0; j < n; ++j) {
                for (let k = 0; k < b.length; ++k) {
                    c[i][j] += a[i][k] * b[k][j];
                }
            }
        }
        return c;
    }
    
    function pow(a: number[][], n: number): number[][] {
        let res = [[1, 1, 0]];
        while (n) {
            if (n & 1) {
                res = mul(res, a);
            }
            a = mul(a, a);
            n >>= 1;
        }
        return res;
    }
    
    
  • /**
     * @param {number} n
     * @return {number}
     */
    var tribonacci = function (n) {
        let a = 0;
        let b = 1;
        let c = 1;
        while (n--) {
            let d = a + b + c;
            a = b;
            b = c;
            c = d;
        }
        return a;
    };
    
    
  • class Solution {
        /**
         * @param Integer $n
         * @return Integer
         */
        function tribonacci($n) {
            if ($n == 0) {
                return 0;
            } elseif ($n == 1 || $n == 2) {
                return 1;
            }
            $dp = [0, 1, 1];
            for ($i = 3; $i <= $n; $i++) {
                $dp[$i] = $dp[$i - 1] + $dp[$i - 2] + $dp[$i - 3];
            }
            return $dp[$n];
        }
    }
    
    

All Problems

All Solutions