Welcome to Subscribe On Youtube
1137. N-th Tribonacci Number
Description
The Tribonacci sequence Tn is defined as follows:
T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn + Tn+1 + Tn+2 for n >= 0.
Given n
, return the value of Tn.
Example 1:
Input: n = 4 Output: 4 Explanation: T_3 = 0 + 1 + 1 = 2 T_4 = 1 + 1 + 2 = 4
Example 2:
Input: n = 25 Output: 1389537
Constraints:
0 <= n <= 37
- The answer is guaranteed to fit within a 32-bit integer, ie.
answer <= 2^31 - 1
.
Solutions
Solution 1: Dynamic Programming
According to the recurrence relation given in the problem, we can use dynamic programming to solve it.
We define three variables $a$, $b$, $c$ to represent $T_{n-3}$, $T_{n-2}$, $T_{n-1}$, respectively, with initial values of $0$, $1$, $1$.
Then we decrease $n$ to $0$, updating the values of $a$, $b$, $c$ each time, until $n$ is $0$, at which point the answer is $a$.
The time complexity is $O(n)$, and the space complexity is $O(1)$. Here, $n$ is the given integer.
Solution 2: Matrix Exponentiation to Accelerate Recurrence
We define $Tib(n)$ as a $1 \times 3$ matrix $\begin{bmatrix} T_n & T_{n - 1} & T_{n - 2} \end{bmatrix}$, where $T_n$, $T_{n - 1}$ and $T_{n - 2}$ represent the $n$th, $(n - 1)$th and $(n - 2)$th Tribonacci numbers, respectively.
We hope to derive $Tib(n)$ from $Tib(n-1) = \begin{bmatrix} T_{n - 1} & T_{n - 2} & T_{n - 3} \end{bmatrix}$. That is, we need a matrix $base$ such that $Tib(n - 1) \times base = Tib(n)$, i.e.,
\[\begin{bmatrix} T_{n - 1} & T_{n - 2} & T_{n - 3} \end{bmatrix} \times base = \begin{bmatrix} T_n & T_{n - 1} & T_{n - 2} \end{bmatrix}\]Since $T_n = T_{n - 1} + T_{n - 2} + T_{n - 3}$, the matrix $base$ is:
\[\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}\]We define the initial matrix $res = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$, then $T_n$ is equal to the sum of all elements in the result matrix of $res$ multiplied by $base^{n - 3}$. This can be solved using matrix exponentiation.
The time complexity is $O(\log n)$, and the space complexity is $O(1)$.
-
class Solution { public int tribonacci(int n) { int a = 0, b = 1, c = 1; while (n-- > 0) { int d = a + b + c; a = b; b = c; c = d; } return a; } }
-
class Solution { public: int tribonacci(int n) { long long a = 0, b = 1, c = 1; while (n--) { long long d = a + b + c; a = b; b = c; c = d; } return (int) a; } };
-
class Solution: def tribonacci(self, n: int) -> int: a, b, c = 0, 1, 1 for _ in range(n): a, b, c = b, c, a + b + c return a
-
func tribonacci(n int) int { a, b, c := 0, 1, 1 for i := 0; i < n; i++ { a, b, c = b, c, a+b+c } return a }
-
function tribonacci(n: number): number { if (n === 0) { return 0; } if (n < 3) { return 1; } const a = [ [1, 1, 0], [1, 0, 1], [1, 0, 0], ]; return pow(a, n - 3)[0].reduce((a, b) => a + b); } function mul(a: number[][], b: number[][]): number[][] { const [m, n] = [a.length, b[0].length]; const c = Array.from({ length: m }, () => Array.from({ length: n }, () => 0)); for (let i = 0; i < m; ++i) { for (let j = 0; j < n; ++j) { for (let k = 0; k < b.length; ++k) { c[i][j] += a[i][k] * b[k][j]; } } } return c; } function pow(a: number[][], n: number): number[][] { let res = [[1, 1, 0]]; while (n) { if (n & 1) { res = mul(res, a); } a = mul(a, a); n >>= 1; } return res; }
-
/** * @param {number} n * @return {number} */ var tribonacci = function (n) { let a = 0; let b = 1; let c = 1; while (n--) { let d = a + b + c; a = b; b = c; c = d; } return a; };
-
class Solution { /** * @param Integer $n * @return Integer */ function tribonacci($n) { if ($n == 0) { return 0; } elseif ($n == 1 || $n == 2) { return 1; } $dp = [0, 1, 1]; for ($i = 3; $i <= $n; $i++) { $dp[$i] = $dp[$i - 1] + $dp[$i - 2] + $dp[$i - 3]; } return $dp[$n]; } }