Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/1128.html

1128. Number of Equivalent Domino Pairs (Easy)

Given a list of dominoesdominoes[i] = [a, b] is equivalent to dominoes[j] = [c, d] if and only if either (a==c and b==d), or (a==d and b==c) - that is, one domino can be rotated to be equal to another domino.

Return the number of pairs (i, j) for which 0 <= i < j < dominoes.length, and dominoes[i] is equivalent to dominoes[j].

 

Example 1:

Input: dominoes = [[1,2],[2,1],[3,4],[5,6]]
Output: 1

 

Constraints:

  • 1 <= dominoes.length <= 40000
  • 1 <= dominoes[i][j] <= 9

Related Topics:
Array

Solution 1.

  • class Solution {
        public int numEquivDominoPairs(int[][] dominoes) {
            int length = dominoes.length;
            for (int i = 0; i < length; i++) {
                int[] domino = dominoes[i];
                if (domino[0] > domino[1]) {
                    int temp = domino[0];
                    dominoes[i][0] = dominoes[i][1];
                    dominoes[i][1] = temp;
                }
            }
            Arrays.sort(dominoes, new Comparator<int[]>() {
                public int compare(int[] array1, int[] array2) {
                    if (array1[0] != array2[0])
                        return array1[0] - array2[0];
                    else
                        return array1[1] - array2[1];
                }
            });
            int equivalentCount = 0;
            int consecutive = 1;
            for (int i = 1; i < length; i++) {
                int[] prevDomino = dominoes[i - 1];
                int[] curDomino = dominoes[i];
                if (prevDomino[0] == curDomino[0] && prevDomino[1] == curDomino[1])
                    consecutive++;
                else {
                    equivalentCount += consecutive * (consecutive - 1) / 2;
                    consecutive = 1;
                }
            }
            if (consecutive > 1)
                equivalentCount += consecutive * (consecutive - 1) / 2;
            return equivalentCount;
        }
    }
    
    ############
    
    class Solution {
        public int numEquivDominoPairs(int[][] dominoes) {
            int ans = 0;
            int[] counter = new int[100];
            for (int[] d : dominoes) {
                int v = d[0] > d[1] ? d[0] * 10 + d[1] : d[1] * 10 + d[0];
                ans += counter[v];
                ++counter[v];
            }
            return ans;
        }
    }
    
  • // OJ: https://leetcode.com/problems/number-of-equivalent-domino-pairs/
    // Time: O(NlogN)
    // Space: O(N)
    class Solution {
    public:
        int numEquivDominoPairs(vector<vector<int>>& A) {
            map<vector<int>, int> m;
            int ans = 0;
            for (auto &v : A) {
                sort(begin(v), end(v));
                ans += m[v];
                m[v]++;
            }
            return ans;
        }
    };
    
  • class Solution:
        def numEquivDominoPairs(self, dominoes: List[List[int]]) -> int:
            counter = Counter()
            ans = 0
            for a, b in dominoes:
                v = a * 10 + b if a > b else b * 10 + a
                ans += counter[v]
                counter[v] += 1
            return ans
    
    ############
    
    class Solution(object):
        def numEquivDominoPairs(self, dominoes):
            count = dict()
            for domi in dominoes:
                hash_ = domi[0] * 10 + domi[1] if domi[0] < domi[1] else domi[1] * 10 + domi[0]
                if hash_ in count:
                    count[hash_] += 1
                else:
                    count[hash_] = 1
            res = 0
            for v in count.values():
                res += v * (v - 1) / 2
            return res
    
  • func numEquivDominoPairs(dominoes [][]int) int {
    	counter := make([]int, 100)
    	for _, d := range dominoes {
    		if d[1] < d[0] {
    			d[0], d[1] = d[1], d[0]
    		}
    		v := d[0]*10 + d[1]
    		counter[v]++
    	}
    	ans := 0
    	for _, c := range counter {
    		ans += c * (c - 1) / 2
    	}
    	return ans
    }
    

All Problems

All Solutions