Welcome to Subscribe On Youtube
1128. Number of Equivalent Domino Pairs
Description
Given a list of dominoes, dominoes[i] = [a, b] is equivalent to dominoes[j] = [c, d] if and only if either (a == c and b == d), or (a == d and b == c) - that is, one domino can be rotated to be equal to another domino.
Return the number of pairs (i, j) for which 0 <= i < j < dominoes.length, and dominoes[i] is equivalent to dominoes[j].
Example 1:
Input: dominoes = [[1,2],[2,1],[3,4],[5,6]] Output: 1
Example 2:
Input: dominoes = [[1,2],[1,2],[1,1],[1,2],[2,2]] Output: 3
Constraints:
1 <= dominoes.length <= 4 * 104dominoes[i].length == 21 <= dominoes[i][j] <= 9
Solutions
Solution 1: Counting
We can concatenate the two numbers of each domino in order of size to form a two-digit number, so that equivalent dominoes can be concatenated into the same two-digit number. For example, both [1, 2] and [2, 1] are concatenated into the two-digit number 12, and both [3, 4] and [4, 3] are concatenated into the two-digit number 34.
Then we traverse all the dominoes, using an array $cnt$ of length $100$ to record the number of occurrences of each two-digit number. For each domino, the two-digit number we concatenate is $x$, then the answer will increase by $cnt[x]$, and then we add $1$ to the value of $cnt[x]$. Continue to traverse the next domino, and we can count the number of all equivalent domino pairs.
The time complexity is $O(n)$, and the space complexity is $O(C)$. Here, $n$ is the number of dominoes, and $C$ is the maximum number of two-digit numbers concatenated in the dominoes, which is $100$.
-
class Solution { public int numEquivDominoPairs(int[][] dominoes) { int[] cnt = new int[100]; int ans = 0; for (var e : dominoes) { int x = e[0] < e[1] ? e[0] * 10 + e[1] : e[1] * 10 + e[0]; ans += cnt[x]++; } return ans; } } -
class Solution { public: int numEquivDominoPairs(vector<vector<int>>& dominoes) { int cnt[100]{}; int ans = 0; for (auto& e : dominoes) { int x = e[0] < e[1] ? e[0] * 10 + e[1] : e[1] * 10 + e[0]; ans += cnt[x]++; } return ans; } }; -
class Solution: def numEquivDominoPairs(self, dominoes: List[List[int]]) -> int: cnt = Counter() ans = 0 for a, b in dominoes: ans += cnt[(a, b)] cnt[(a, b)] += 1 if a != b: cnt[(b, a)] += 1 return ans -
func numEquivDominoPairs(dominoes [][]int) (ans int) { cnt := [100]int{} for _, e := range dominoes { x := e[0]*10 + e[1] if e[0] > e[1] { x = e[1]*10 + e[0] } ans += cnt[x] cnt[x]++ } return } -
function numEquivDominoPairs(dominoes: number[][]): number { const cnt: number[] = new Array(100).fill(0); let ans = 0; for (const [a, b] of dominoes) { const key = a < b ? a * 10 + b : b * 10 + a; ans += cnt[key]; cnt[key]++; } return ans; } -
impl Solution { pub fn num_equiv_domino_pairs(dominoes: Vec<Vec<i32>>) -> i32 { let mut cnt = [0i32; 100]; let mut ans = 0; for d in dominoes { let a = d[0] as usize; let b = d[1] as usize; let key = if a < b { a * 10 + b } else { b * 10 + a }; ans += cnt[key]; cnt[key] += 1; } ans } }