Welcome to Subscribe On Youtube

1124. Longest Well-Performing Interval

Description

We are given hours, a list of the number of hours worked per day for a given employee.

A day is considered to be a tiring day if and only if the number of hours worked is (strictly) greater than 8.

A well-performing interval is an interval of days for which the number of tiring days is strictly larger than the number of non-tiring days.

Return the length of the longest well-performing interval.

 

Example 1:

Input: hours = [9,9,6,0,6,6,9]
Output: 3
Explanation: The longest well-performing interval is [9,9,6].

Example 2:

Input: hours = [6,6,6]
Output: 0

 

Constraints:

  • 1 <= hours.length <= 104
  • 0 <= hours[i] <= 16

Solutions

Solution 1: Prefix Sum + Hash Table

We can use the idea of prefix sum, maintaining a variable $s$, which represents the difference between the number of “tiring days” and “non-tiring days” from index $0$ to the current index. If $s$ is greater than $0$, it means that the segment from index $0$ to the current index is a “well-performing time period”. In addition, we use a hash table $pos$ to record the first occurrence index of each $s$.

Next, we traverse the hours array, for each index $i$:

  • If $hours[i] > 8$, we increment $s$ by $1$, otherwise we decrement $s$ by $1$.
  • If $s > 0$, it means that the segment from index $0$ to the current index $i$ is a “well-performing time period”, we update the result $ans = i + 1$. Otherwise, if $s - 1$ is in the hash table $pos$, let $j = pos[s - 1]$, it means that the segment from index $j + 1$ to the current index $i$ is a “well-performing time period”, we update the result $ans = \max(ans, i - j)$.
  • Then, if $s$ is not in the hash table $pos$, we record $pos[s] = i$.

After the traversal, return the answer.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the hours array.

  • class Solution {
        public int longestWPI(int[] hours) {
            int ans = 0, s = 0;
            Map<Integer, Integer> pos = new HashMap<>();
            for (int i = 0; i < hours.length; ++i) {
                s += hours[i] > 8 ? 1 : -1;
                if (s > 0) {
                    ans = i + 1;
                } else if (pos.containsKey(s - 1)) {
                    ans = Math.max(ans, i - pos.get(s - 1));
                }
                pos.putIfAbsent(s, i);
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int longestWPI(vector<int>& hours) {
            int ans = 0, s = 0;
            unordered_map<int, int> pos;
            for (int i = 0; i < hours.size(); ++i) {
                s += hours[i] > 8 ? 1 : -1;
                if (s > 0) {
                    ans = i + 1;
                } else if (pos.count(s - 1)) {
                    ans = max(ans, i - pos[s - 1]);
                }
                if (!pos.count(s)) {
                    pos[s] = i;
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def longestWPI(self, hours: List[int]) -> int:
            ans = s = 0
            pos = {}
            for i, x in enumerate(hours):
                s += 1 if x > 8 else -1
                if s > 0:
                    ans = i + 1
                elif s - 1 in pos:
                    ans = max(ans, i - pos[s - 1])
                if s not in pos:
                    pos[s] = i
            return ans
    
    
  • func longestWPI(hours []int) (ans int) {
    	s := 0
    	pos := map[int]int{}
    	for i, x := range hours {
    		if x > 8 {
    			s++
    		} else {
    			s--
    		}
    		if s > 0 {
    			ans = i + 1
    		} else if j, ok := pos[s-1]; ok {
    			ans = max(ans, i-j)
    		}
    		if _, ok := pos[s]; !ok {
    			pos[s] = i
    		}
    	}
    	return
    }
    

All Problems

All Solutions