Welcome to Subscribe On Youtube
1124. Longest Well-Performing Interval
Description
We are given hours
, a list of the number of hours worked per day for a given employee.
A day is considered to be a tiring day if and only if the number of hours worked is (strictly) greater than 8
.
A well-performing interval is an interval of days for which the number of tiring days is strictly larger than the number of non-tiring days.
Return the length of the longest well-performing interval.
Example 1:
Input: hours = [9,9,6,0,6,6,9] Output: 3 Explanation: The longest well-performing interval is [9,9,6].
Example 2:
Input: hours = [6,6,6] Output: 0
Constraints:
1 <= hours.length <= 104
0 <= hours[i] <= 16
Solutions
Solution 1: Prefix Sum + Hash Table
We can use the idea of prefix sum, maintaining a variable $s$, which represents the difference between the number of “tiring days” and “non-tiring days” from index $0$ to the current index. If $s$ is greater than $0$, it means that the segment from index $0$ to the current index is a “well-performing time period”. In addition, we use a hash table $pos$ to record the first occurrence index of each $s$.
Next, we traverse the hours
array, for each index $i$:
- If $hours[i] > 8$, we increment $s$ by $1$, otherwise we decrement $s$ by $1$.
- If $s > 0$, it means that the segment from index $0$ to the current index $i$ is a “well-performing time period”, we update the result $ans = i + 1$. Otherwise, if $s - 1$ is in the hash table $pos$, let $j = pos[s - 1]$, it means that the segment from index $j + 1$ to the current index $i$ is a “well-performing time period”, we update the result $ans = \max(ans, i - j)$.
- Then, if $s$ is not in the hash table $pos$, we record $pos[s] = i$.
After the traversal, return the answer.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the hours
array.
-
class Solution { public int longestWPI(int[] hours) { int ans = 0, s = 0; Map<Integer, Integer> pos = new HashMap<>(); for (int i = 0; i < hours.length; ++i) { s += hours[i] > 8 ? 1 : -1; if (s > 0) { ans = i + 1; } else if (pos.containsKey(s - 1)) { ans = Math.max(ans, i - pos.get(s - 1)); } pos.putIfAbsent(s, i); } return ans; } }
-
class Solution { public: int longestWPI(vector<int>& hours) { int ans = 0, s = 0; unordered_map<int, int> pos; for (int i = 0; i < hours.size(); ++i) { s += hours[i] > 8 ? 1 : -1; if (s > 0) { ans = i + 1; } else if (pos.count(s - 1)) { ans = max(ans, i - pos[s - 1]); } if (!pos.count(s)) { pos[s] = i; } } return ans; } };
-
class Solution: def longestWPI(self, hours: List[int]) -> int: ans = s = 0 pos = {} for i, x in enumerate(hours): s += 1 if x > 8 else -1 if s > 0: ans = i + 1 elif s - 1 in pos: ans = max(ans, i - pos[s - 1]) if s not in pos: pos[s] = i return ans
-
func longestWPI(hours []int) (ans int) { s := 0 pos := map[int]int{} for i, x := range hours { if x > 8 { s++ } else { s-- } if s > 0 { ans = i + 1 } else if j, ok := pos[s-1]; ok { ans = max(ans, i-j) } if _, ok := pos[s]; !ok { pos[s] = i } } return }