Welcome to Subscribe On Youtube

1042. Flower Planting With No Adjacent

Description

You have n gardens, labeled from 1 to n, and an array paths where paths[i] = [xi, yi] describes a bidirectional path between garden xi to garden yi. In each garden, you want to plant one of 4 types of flowers.

All gardens have at most 3 paths coming into or leaving it.

Your task is to choose a flower type for each garden such that, for any two gardens connected by a path, they have different types of flowers.

Return any such a choice as an array answer, where answer[i] is the type of flower planted in the (i+1)th garden. The flower types are denoted 1, 2, 3, or 4. It is guaranteed an answer exists.

 

Example 1:

Input: n = 3, paths = [[1,2],[2,3],[3,1]]
Output: [1,2,3]
Explanation:
Gardens 1 and 2 have different types.
Gardens 2 and 3 have different types.
Gardens 3 and 1 have different types.
Hence, [1,2,3] is a valid answer. Other valid answers include [1,2,4], [1,4,2], and [3,2,1].

Example 2:

Input: n = 4, paths = [[1,2],[3,4]]
Output: [1,2,1,2]

Example 3:

Input: n = 4, paths = [[1,2],[2,3],[3,4],[4,1],[1,3],[2,4]]
Output: [1,2,3,4]

 

Constraints:

  • 1 <= n <= 104
  • 0 <= paths.length <= 2 * 104
  • paths[i].length == 2
  • 1 <= xi, yi <= n
  • xi != yi
  • Every garden has at most 3 paths coming into or leaving it.

Solutions

  • class Solution {
        public int[] gardenNoAdj(int n, int[][] paths) {
            List<Integer>[] g = new List[n];
            Arrays.setAll(g, k -> new ArrayList<>());
            for (var p : paths) {
                int x = p[0] - 1, y = p[1] - 1;
                g[x].add(y);
                g[y].add(x);
            }
            int[] ans = new int[n];
            boolean[] used = new boolean[5];
            for (int x = 0; x < n; ++x) {
                Arrays.fill(used, false);
                for (int y : g[x]) {
                    used[ans[y]] = true;
                }
                for (int c = 1; c < 5; ++c) {
                    if (!used[c]) {
                        ans[x] = c;
                        break;
                    }
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        vector<int> gardenNoAdj(int n, vector<vector<int>>& paths) {
            vector<vector<int>> g(n);
            for (auto& p : paths) {
                int x = p[0] - 1, y = p[1] - 1;
                g[x].push_back(y);
                g[y].push_back(x);
            }
            vector<int> ans(n);
            bool used[5];
            for (int x = 0; x < n; ++x) {
                memset(used, false, sizeof(used));
                for (int y : g[x]) {
                    used[ans[y]] = true;
                }
                for (int c = 1; c < 5; ++c) {
                    if (!used[c]) {
                        ans[x] = c;
                        break;
                    }
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def gardenNoAdj(self, n: int, paths: List[List[int]]) -> List[int]:
            g = defaultdict(list)
            for x, y in paths:
                x, y = x - 1, y - 1
                g[x].append(y)
                g[y].append(x)
            ans = [0] * n
            for x in range(n):
                used = {ans[y] for y in g[x]}
                for c in range(1, 5):
                    if c not in used:
                        ans[x] = c
                        break
            return ans
    
    
  • func gardenNoAdj(n int, paths [][]int) []int {
    	g := make([][]int, n)
    	for _, p := range paths {
    		x, y := p[0]-1, p[1]-1
    		g[x] = append(g[x], y)
    		g[y] = append(g[y], x)
    	}
    	ans := make([]int, n)
    	for x := 0; x < n; x++ {
    		used := [5]bool{}
    		for _, y := range g[x] {
    			used[ans[y]] = true
    		}
    		for c := 1; c < 5; c++ {
    			if !used[c] {
    				ans[x] = c
    				break
    			}
    		}
    	}
    	return ans
    }
    
  • function gardenNoAdj(n: number, paths: number[][]): number[] {
        const g: number[][] = new Array(n).fill(0).map(() => []);
        for (const [x, y] of paths) {
            g[x - 1].push(y - 1);
            g[y - 1].push(x - 1);
        }
        const ans: number[] = new Array(n).fill(0);
        for (let x = 0; x < n; ++x) {
            const used: boolean[] = new Array(5).fill(false);
            for (const y of g[x]) {
                used[ans[y]] = true;
            }
            for (let c = 1; c < 5; ++c) {
                if (!used[c]) {
                    ans[x] = c;
                    break;
                }
            }
        }
        return ans;
    }
    
    

All Problems

All Solutions