Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/1037.html
1037. Valid Boomerang (Easy)
A boomerang is a set of 3 points that are all distinct and not in a straight line.
Given a list of three points in the plane, return whether these points are a boomerang.
Example 1:
Input: [[1,1],[2,3],[3,2]] Output: true
Example 2:
Input: [[1,1],[2,2],[3,3]] Output: false
Note:
points.length == 3
points[i].length == 2
0 <= points[i][j] <= 100
Companies:
Google
Related Topics:
Math
Solution 1.
-
class Solution { public boolean isBoomerang(int[][] points) { int difX1 = points[1][0] - points[0][0], difY1 = points[1][1] - points[0][1]; int difX2 = points[2][0] - points[1][0], difY2 = points[2][1] - points[1][1]; return difX1 * difY2 != difX2 * difY1; } } ############ class Solution { public boolean isBoomerang(int[][] points) { int x1 = points[0][0], y1 = points[0][1]; int x2 = points[1][0], y2 = points[1][1]; int x3 = points[2][0], y3 = points[2][1]; return (y2 - y1) * (x3 - x2) != (y3 - y2) * (x2 - x1); } }
-
// OJ: https://leetcode.com/problems/valid-boomerang // Time: O(1) // Space: O(1) class Solution { public: bool isBoomerang(vector<vector<int>>& points) { return (points[0][1] - points[1][1]) * (points[0][0] - points[2][0]) != (points[0][1] - points[2][1]) * (points[0][0] - points[1][0]); } };
-
class Solution: def isBoomerang(self, points: List[List[int]]) -> bool: (x1, y1), (x2, y2), (x3, y3) = points return (y2 - y1) * (x3 - x2) != (y3 - y2) * (x2 - x1) ############ # 1037. Valid Boomerang # https://leetcode.com/problems/valid-boomerang/ class Solution: def isBoomerang(self, p: List[List[int]]) -> bool: return (p[0][0] - p[1][0]) * (p[0][1] - p[2][1]) != (p[0][0] - p[2][0]) * (p[0][1] - p[1][1])
-
func isBoomerang(points [][]int) bool { x1, y1 := points[0][0], points[0][1] x2, y2 := points[1][0], points[1][1] x3, y3 := points[2][0], points[2][1] return (y2-y1)*(x3-x2) != (y3-y2)*(x2-x1) }
-
function isBoomerang(points: number[][]): boolean { const [x1, y1] = points[0]; const [x2, y2] = points[1]; const [x3, y3] = points[2]; return (x1 - x2) * (y2 - y3) !== (x2 - x3) * (y1 - y2); }
-
impl Solution { pub fn is_boomerang(points: Vec<Vec<i32>>) -> bool { let (x1, y1) = (points[0][0], points[0][1]); let (x2, y2) = (points[1][0], points[1][1]); let (x3, y3) = (points[2][0], points[2][1]); (x1 - x2) * (y2 - y3) != (x2 - x3) * (y1 - y2) } }