##### Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/1025.html

# 1025. Divisor Game (Easy)

Alice and Bob take turns playing a game, with Alice starting first.

Initially, there is a number N on the chalkboard.  On each player's turn, that player makes a move consisting of:

• Choosing any x with 0 < x < N and N % x == 0.
• Replacing the number N on the chalkboard with N - x.

Also, if a player cannot make a move, they lose the game.

Return True if and only if Alice wins the game, assuming both players play optimally.

Example 1:

Input: 2
Output: true
Explanation: Alice chooses 1, and Bob has no more moves.


Example 2:

Input: 3
Output: false
Explanation: Alice chooses 1, Bob chooses 1, and Alice has no more moves.


Note:

1. 1 <= N <= 1000

Companies:
Visa

Related Topics:
Math, Dynamic Programming

## Solution 1.

Denote F(N) as the result.

1. If F(N) = false, then F(N + 1) = true. Because for case N + 1, Alice can simply pick x = 1 to win.
2. If N is odd number, it only have odd factors. So after the first move, it will become even number.
• F(1) = false
• F(2) = true according to Rule #1.
• F(3) = false since 2 is the only possible situation for Bob and F(2) = true.
• F(4) = true according to Rule #1.
• F(5) = false since all even numbers (2 and 4) lead to true for Bob.

So we can see, even numbers always win; odd numbers lose.

• class Solution {
public boolean divisorGame(int N) {
boolean[] dp = new boolean[N + 1];
for (int i = 1; i <= N; i++) {
for (int j = 1; j < i; j++) {
if (i % (i - j) == 0 && !dp[j]) {
dp[i] = true;
break;
}
}
}
return dp[N];
}
}

############

class Solution {
public boolean divisorGame(int n) {
return n % 2 == 0;
}
}

• // OJ: https://leetcode.com/problems/divisor-game/
// Time: O(N * sqrt(N))
// Space: O(N)
class Solution {
private:
unordered_map<int, bool> m;
public:
bool divisorGame(int N) {
if (N == 1) return false;
if (m.find(N) != m.end()) return m[N];
bool ans = false;
for (int x = sqrt(N); x >= 1 && !ans; --x) {
if (N % x) continue;
if (!divisorGame(N - x)) ans = true;
}
return m[N] = ans;
}
};

// OJ: https://leetcode.com/problems/divisor-game/
// Time: O(1)
// Space: O(1)
// Ref: https://leetcode.com/problems/divisor-game/discuss/274566/just-return-N-2-0-(proof)
class Solution {
public:
bool divisorGame(int N) {
return N % 2 == 0;
}
};


• class Solution:
def divisorGame(self, n: int) -> bool:
return n % 2 == 0

############

# 1025. Divisor Game
# https://leetcode.com/problems/divisor-game/

class Solution:
def divisorGame(self, n: int) -> bool:
return n % 2 == 0


• func divisorGame(n int) bool {
return n%2 == 0
}