Welcome to Subscribe On Youtube

1012. Numbers With Repeated Digits

Description

Given an integer n, return the number of positive integers in the range [1, n] that have at least one repeated digit.

 

Example 1:

Input: n = 20
Output: 1
Explanation: The only positive number (<= 20) with at least 1 repeated digit is 11.

Example 2:

Input: n = 100
Output: 10
Explanation: The positive numbers (<= 100) with atleast 1 repeated digit are 11, 22, 33, 44, 55, 66, 77, 88, 99, and 100.

Example 3:

Input: n = 1000
Output: 262

 

Constraints:

  • 1 <= n <= 109

Solutions

  • class Solution {
        private int[] nums = new int[11];
        private Integer[][] dp = new Integer[11][1 << 11];
    
        public int numDupDigitsAtMostN(int n) {
            return n - f(n);
        }
    
        private int f(int n) {
            int i = -1;
            for (; n > 0; n /= 10) {
                nums[++i] = n % 10;
            }
            return dfs(i, 0, true, true);
        }
    
        private int dfs(int pos, int mask, boolean lead, boolean limit) {
            if (pos < 0) {
                return lead ? 0 : 1;
            }
            if (!lead && !limit && dp[pos][mask] != null) {
                return dp[pos][mask];
            }
            int ans = 0;
            int up = limit ? nums[pos] : 9;
            for (int i = 0; i <= up; ++i) {
                if ((mask >> i & 1) == 1) {
                    continue;
                }
                if (i == 0 && lead) {
                    ans += dfs(pos - 1, mask, lead, limit && i == up);
                } else {
                    ans += dfs(pos - 1, mask | 1 << i, false, limit && i == up);
                }
            }
            if (!lead && !limit) {
                dp[pos][mask] = ans;
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int numDupDigitsAtMostN(int n) {
            return n - f(n);
        }
    
    private:
        int nums[11];
        int dp[11][1 << 11];
    
        int f(int n) {
            memset(dp, -1, sizeof(dp));
            int i = -1;
            for (; n; n /= 10) {
                nums[++i] = n % 10;
            }
            return dfs(i, 0, true, true);
        }
    
        int dfs(int pos, int mask, bool lead, bool limit) {
            if (pos < 0) {
                return lead ? 0 : 1;
            }
            if (!lead && !limit && dp[pos][mask] != -1) {
                return dp[pos][mask];
            }
            int up = limit ? nums[pos] : 9;
            int ans = 0;
            for (int i = 0; i <= up; ++i) {
                if (mask >> i & 1) {
                    continue;
                }
                if (i == 0 && lead) {
                    ans += dfs(pos - 1, mask, lead, limit && i == up);
                } else {
                    ans += dfs(pos - 1, mask | 1 << i, false, limit && i == up);
                }
            }
            if (!lead && !limit) {
                dp[pos][mask] = ans;
            }
            return ans;
        }
    };
    
  • class Solution:
        def numDupDigitsAtMostN(self, n: int) -> int:
            return n - self.f(n)
    
        def f(self, n: int) -> int:
            @cache
            def dfs(pos: int, mask: int, lead: bool, limit: bool) -> int:
                if pos < 0:
                    return int(lead) ^ 1
                up = nums[pos] if limit else 9
                ans = 0
                for i in range(up + 1):
                    if mask >> i & 1:
                        continue
                    if i == 0 and lead:
                        ans += dfs(pos - 1, mask, lead, limit and i == up)
                    else:
                        ans += dfs(pos - 1, mask | 1 << i, False, limit and i == up)
                return ans
    
            nums = []
            while n:
                nums.append(n % 10)
                n //= 10
            return dfs(len(nums) - 1, 0, True, True)
    
    
  • func numDupDigitsAtMostN(n int) int {
    	return n - f(n)
    }
    
    func f(n int) int {
    	nums := []int{}
    	for ; n > 0; n /= 10 {
    		nums = append(nums, n%10)
    	}
    	dp := [11][1 << 11]int{}
    	for i := range dp {
    		for j := range dp[i] {
    			dp[i][j] = -1
    		}
    	}
    	var dfs func(int, int, bool, bool) int
    	dfs = func(pos int, mask int, lead bool, limit bool) int {
    		if pos < 0 {
    			if lead {
    				return 0
    			}
    			return 1
    		}
    		if !lead && !limit && dp[pos][mask] != -1 {
    			return dp[pos][mask]
    		}
    		up := 9
    		if limit {
    			up = nums[pos]
    		}
    		ans := 0
    		for i := 0; i <= up; i++ {
    			if mask>>i&1 == 1 {
    				continue
    			}
    			if i == 0 && lead {
    				ans += dfs(pos-1, mask, lead, limit && i == up)
    			} else {
    				ans += dfs(pos-1, mask|1<<i, false, limit && i == up)
    			}
    		}
    		if !lead && !limit {
    			dp[pos][mask] = ans
    		}
    		return ans
    	}
    	return dfs(len(nums)-1, 0, true, true)
    }
    
  • function numDupDigitsAtMostN(n: number): number {
        return n - f(n);
    }
    
    function f(n: number): number {
        const nums: number[] = [];
        let i = -1;
        for (; n; n = Math.floor(n / 10)) {
            nums[++i] = n % 10;
        }
        const dp = Array.from({ length: 11 }, () => Array(1 << 11).fill(-1));
        const dfs = (pos: number, mask: number, lead: boolean, limit: boolean): number => {
            if (pos < 0) {
                return lead ? 0 : 1;
            }
            if (!lead && !limit && dp[pos][mask] !== -1) {
                return dp[pos][mask];
            }
            const up = limit ? nums[pos] : 9;
            let ans = 0;
            for (let i = 0; i <= up; ++i) {
                if ((mask >> i) & 1) {
                    continue;
                }
                if (lead && i === 0) {
                    ans += dfs(pos - 1, mask, lead, limit && i === up);
                } else {
                    ans += dfs(pos - 1, mask | (1 << i), false, limit && i === up);
                }
            }
            if (!lead && !limit) {
                dp[pos][mask] = ans;
            }
            return ans;
        };
        return dfs(i, 0, true, true);
    }
    
    

All Problems

All Solutions