Welcome to Subscribe On Youtube
1009. Complement of Base 10 Integer
Description
The complement of an integer is the integer you get when you flip all the 0's to 1's and all the 1's to 0's in its binary representation.
- For example, The integer
5is"101"in binary and its complement is"010"which is the integer2.
Given an integer n, return its complement.
Example 1:
Input: n = 5 Output: 2 Explanation: 5 is "101" in binary, with complement "010" in binary, which is 2 in base-10.
Example 2:
Input: n = 7 Output: 0 Explanation: 7 is "111" in binary, with complement "000" in binary, which is 0 in base-10.
Example 3:
Input: n = 10 Output: 5 Explanation: 10 is "1010" in binary, with complement "0101" in binary, which is 5 in base-10.
Constraints:
0 <= n < 109
Note: This question is the same as 476: https://leetcode.com/problems/number-complement/
Solutions
-
class Solution { public int bitwiseComplement(int n) { if (n == 0) { return 1; } int ans = 0; boolean find = false; for (int i = 30; i >= 0; --i) { int b = n & (1 << i); if (!find && b == 0) { continue; } find = true; if (b == 0) { ans |= (1 << i); } } return ans; } } -
class Solution { public: int bitwiseComplement(int n) { if (n == 0) return 1; int ans = 0; bool find = false; for (int i = 30; i >= 0; --i) { int b = n & (1 << i); if (!find && b == 0) continue; find = true; if (b == 0) ans |= (1 << i); } return ans; } }; -
class Solution: def bitwiseComplement(self, n: int) -> int: if n == 0: return 1 ans = 0 find = False for i in range(30, -1, -1): b = n & (1 << i) if not find and b == 0: continue find = True if b == 0: ans |= 1 << i return ans -
func bitwiseComplement(n int) int { if n == 0 { return 1 } ans := 0 find := false for i := 30; i >= 0; i-- { b := n & (1 << i) if !find && b == 0 { continue } find = true if b == 0 { ans |= (1 << i) } } return ans } -
function bitwiseComplement(n: number): number { if (n === 0) { return 1; } let ans = 0; for (let i = 0; n; n >>= 1) { ans |= ((n & 1) ^ 1) << i++; } return ans; } -
impl Solution { pub fn bitwise_complement(mut n: i32) -> i32 { if n == 0 { return 1; } let mut ans = 0; let mut i = 0; while n != 0 { ans |= ((n & 1) ^ 1) << i; n >>= 1; i += 1; } ans } }