Welcome to Subscribe On Youtube
998. Maximum Binary Tree II
Description
A maximum tree is a tree where every node has a value greater than any other value in its subtree.
You are given the root
of a maximum binary tree and an integer val
.
Just as in the previous problem, the given tree was constructed from a list a
(root = Construct(a)
) recursively with the following Construct(a)
routine:
- If
a
is empty, returnnull
. - Otherwise, let
a[i]
be the largest element ofa
. Create aroot
node with the valuea[i]
. - The left child of
root
will beConstruct([a[0], a[1], ..., a[i - 1]])
. - The right child of
root
will beConstruct([a[i + 1], a[i + 2], ..., a[a.length - 1]])
. - Return
root
.
Note that we were not given a
directly, only a root node root = Construct(a)
.
Suppose b
is a copy of a
with the value val
appended to it. It is guaranteed that b
has unique values.
Return Construct(b)
.
Example 1:
Input: root = [4,1,3,null,null,2], val = 5 Output: [5,4,null,1,3,null,null,2] Explanation: a = [1,4,2,3], b = [1,4,2,3,5]
Example 2:
Input: root = [5,2,4,null,1], val = 3 Output: [5,2,4,null,1,null,3] Explanation: a = [2,1,5,4], b = [2,1,5,4,3]
Example 3:
Input: root = [5,2,3,null,1], val = 4 Output: [5,2,4,null,1,3] Explanation: a = [2,1,5,3], b = [2,1,5,3,4]
Constraints:
- The number of nodes in the tree is in the range
[1, 100]
. 1 <= Node.val <= 100
- All the values of the tree are unique.
1 <= val <= 100
Solutions
Solution 1: Recursion
If $val$ is the maximum number, then make $val$ the new root node, and $root$ the left subtree of the new root node.
If $val$ is not the maximum number, since $val$ is the last appended number, it must be on the right side of $root$. Therefore, we can insert $val$ as a new node into the right subtree of $root$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the tree.
Solution 2: Iteration
Search the right subtree, find the node where $curr.val \gt val \gt curr.right.val$, then create a new node $node$, point $node.left$ to $curr.right$, and then point $curr.right$ to $node$.
Finally, return $root$.
The time complexity is $O(n)$, where $n$ is the number of nodes in the tree. The space complexity is $O(1)$.
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public TreeNode insertIntoMaxTree(TreeNode root, int val) { if (root == null || root.val < val) { return new TreeNode(val, root, null); } root.right = insertIntoMaxTree(root.right, val); return root; } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: TreeNode* insertIntoMaxTree(TreeNode* root, int val) { if (!root || root->val < val) return new TreeNode(val, root, nullptr); root->right = insertIntoMaxTree(root->right, val); return root; } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def insertIntoMaxTree( self, root: Optional[TreeNode], val: int ) -> Optional[TreeNode]: if root is None or root.val < val: return TreeNode(val, root) root.right = self.insertIntoMaxTree(root.right, val) return root
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func insertIntoMaxTree(root *TreeNode, val int) *TreeNode { if root == nil || root.Val < val { return &TreeNode{val, root, nil} } root.Right = insertIntoMaxTree(root.Right, val) return root }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function insertIntoMaxTree(root: TreeNode | null, val: number): TreeNode | null { if (!root || root.val < val) { return new TreeNode(val, root); } root.right = insertIntoMaxTree(root.right, val); return root; }
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; impl Solution { pub fn insert_into_max_tree( mut root: Option<Rc<RefCell<TreeNode>>>, val: i32 ) -> Option<Rc<RefCell<TreeNode>>> { if root.is_none() || root.as_ref().unwrap().as_ref().borrow().val < val { return Some( Rc::new( RefCell::new(TreeNode { val, left: root.take(), right: None, }) ) ); } { let mut root = root.as_ref().unwrap().as_ref().borrow_mut(); root.right = Self::insert_into_max_tree(root.right.take(), val); } root } }