Welcome to Subscribe On Youtube

996. Number of Squareful Arrays

Description

An array is squareful if the sum of every pair of adjacent elements is a perfect square.

Given an integer array nums, return the number of permutations of nums that are squareful.

Two permutations perm1 and perm2 are different if there is some index i such that perm1[i] != perm2[i].

 

Example 1:

Input: nums = [1,17,8]
Output: 2
Explanation: [1,8,17] and [17,8,1] are the valid permutations.

Example 2:

Input: nums = [2,2,2]
Output: 1

 

Constraints:

  • 1 <= nums.length <= 12
  • 0 <= nums[i] <= 109

Solutions

  • class Solution {
        public int numSquarefulPerms(int[] nums) {
            int n = nums.length;
            int[][] f = new int[1 << n][n];
            for (int j = 0; j < n; ++j) {
                f[1 << j][j] = 1;
            }
            for (int i = 0; i < 1 << n; ++i) {
                for (int j = 0; j < n; ++j) {
                    if ((i >> j & 1) == 1) {
                        for (int k = 0; k < n; ++k) {
                            if ((i >> k & 1) == 1 && k != j) {
                                int s = nums[j] + nums[k];
                                int t = (int) Math.sqrt(s);
                                if (t * t == s) {
                                    f[i][j] += f[i ^ (1 << j)][k];
                                }
                            }
                        }
                    }
                }
            }
            long ans = 0;
            for (int j = 0; j < n; ++j) {
                ans += f[(1 << n) - 1][j];
            }
            Map<Integer, Integer> cnt = new HashMap<>();
            for (int x : nums) {
                cnt.merge(x, 1, Integer::sum);
            }
            int[] g = new int[13];
            g[0] = 1;
            for (int i = 1; i < 13; ++i) {
                g[i] = g[i - 1] * i;
            }
            for (int v : cnt.values()) {
                ans /= g[v];
            }
            return (int) ans;
        }
    }
    
  • class Solution {
    public:
        int numSquarefulPerms(vector<int>& nums) {
            int n = nums.size();
            int f[1 << n][n];
            memset(f, 0, sizeof(f));
            for (int j = 0; j < n; ++j) {
                f[1 << j][j] = 1;
            }
            for (int i = 0; i < 1 << n; ++i) {
                for (int j = 0; j < n; ++j) {
                    if ((i >> j & 1) == 1) {
                        for (int k = 0; k < n; ++k) {
                            if ((i >> k & 1) == 1 && k != j) {
                                int s = nums[j] + nums[k];
                                int t = sqrt(s);
                                if (t * t == s) {
                                    f[i][j] += f[i ^ (1 << j)][k];
                                }
                            }
                        }
                    }
                }
            }
            long long ans = 0;
            for (int j = 0; j < n; ++j) {
                ans += f[(1 << n) - 1][j];
            }
            unordered_map<int, int> cnt;
            for (int x : nums) {
                ++cnt[x];
            }
            int g[13] = {1};
            for (int i = 1; i < 13; ++i) {
                g[i] = g[i - 1] * i;
            }
            for (auto& [_, v] : cnt) {
                ans /= g[v];
            }
            return ans;
        }
    };
    
  • class Solution:
        def numSquarefulPerms(self, nums: List[int]) -> int:
            n = len(nums)
            f = [[0] * n for _ in range(1 << n)]
            for j in range(n):
                f[1 << j][j] = 1
            for i in range(1 << n):
                for j in range(n):
                    if i >> j & 1:
                        for k in range(n):
                            if (i >> k & 1) and k != j:
                                s = nums[j] + nums[k]
                                t = int(sqrt(s))
                                if t * t == s:
                                    f[i][j] += f[i ^ (1 << j)][k]
    
            ans = sum(f[(1 << n) - 1][j] for j in range(n))
            for v in Counter(nums).values():
                ans //= factorial(v)
            return ans
    
    
  • func numSquarefulPerms(nums []int) (ans int) {
    	n := len(nums)
    	f := make([][]int, 1<<n)
    	for i := range f {
    		f[i] = make([]int, n)
    	}
    	for j := range nums {
    		f[1<<j][j] = 1
    	}
    	for i := 0; i < 1<<n; i++ {
    		for j := 0; j < n; j++ {
    			if i>>j&1 == 1 {
    				for k := 0; k < n; k++ {
    					if i>>k&1 == 1 && k != j {
    						s := nums[j] + nums[k]
    						t := int(math.Sqrt(float64(s)))
    						if t*t == s {
    							f[i][j] += f[i^(1<<j)][k]
    						}
    					}
    				}
    			}
    		}
    	}
    	for j := 0; j < n; j++ {
    		ans += f[(1<<n)-1][j]
    	}
    	g := [13]int{1}
    	for i := 1; i < 13; i++ {
    		g[i] = g[i-1] * i
    	}
    	cnt := map[int]int{}
    	for _, x := range nums {
    		cnt[x]++
    	}
    	for _, v := range cnt {
    		ans /= g[v]
    	}
    	return
    }
    

All Problems

All Solutions