Welcome to Subscribe On Youtube

990. Satisfiability of Equality Equations

Description

You are given an array of strings equations that represent relationships between variables where each string equations[i] is of length 4 and takes one of two different forms: "xi==yi" or "xi!=yi".Here, xi and yi are lowercase letters (not necessarily different) that represent one-letter variable names.

Return true if it is possible to assign integers to variable names so as to satisfy all the given equations, or false otherwise.

 

Example 1:

Input: equations = ["a==b","b!=a"]
Output: false
Explanation: If we assign say, a = 1 and b = 1, then the first equation is satisfied, but not the second.
There is no way to assign the variables to satisfy both equations.

Example 2:

Input: equations = ["b==a","a==b"]
Output: true
Explanation: We could assign a = 1 and b = 1 to satisfy both equations.

 

Constraints:

  • 1 <= equations.length <= 500
  • equations[i].length == 4
  • equations[i][0] is a lowercase letter.
  • equations[i][1] is either '=' or '!'.
  • equations[i][2] is '='.
  • equations[i][3] is a lowercase letter.

Solutions

Union find.

  • class Solution {
        private int[] p;
    
        public boolean equationsPossible(String[] equations) {
            p = new int[26];
            for (int i = 0; i < 26; ++i) {
                p[i] = i;
            }
            for (String e : equations) {
                int a = e.charAt(0) - 'a', b = e.charAt(3) - 'a';
                if (e.charAt(1) == '=') {
                    p[find(a)] = find(b);
                }
            }
            for (String e : equations) {
                int a = e.charAt(0) - 'a', b = e.charAt(3) - 'a';
                if (e.charAt(1) == '!' && find(a) == find(b)) {
                    return false;
                }
            }
            return true;
        }
    
        private int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    }
    
  • class Solution {
    public:
        vector<int> p;
    
        bool equationsPossible(vector<string>& equations) {
            p.resize(26);
            for (int i = 0; i < 26; ++i) p[i] = i;
            for (auto& e : equations) {
                int a = e[0] - 'a', b = e[3] - 'a';
                if (e[1] == '=') p[find(a)] = find(b);
            }
            for (auto& e : equations) {
                int a = e[0] - 'a', b = e[3] - 'a';
                if (e[1] == '!' && find(a) == find(b)) return false;
            }
            return true;
        }
    
        int find(int x) {
            if (p[x] != x) p[x] = find(p[x]);
            return p[x];
        }
    };
    
  • class Solution:
        def equationsPossible(self, equations: List[str]) -> bool:
            def find(x):
                if p[x] != x:
                    p[x] = find(p[x])
                return p[x]
    
            p = list(range(26))
            for e in equations:
                a, b = ord(e[0]) - ord('a'), ord(e[-1]) - ord('a')
                if e[1] == '=':
                    p[find(a)] = find(b)
            for e in equations:
                a, b = ord(e[0]) - ord('a'), ord(e[-1]) - ord('a')
                if e[1] == '!' and find(a) == find(b):
                    return False
            return True
    
    
  • func equationsPossible(equations []string) bool {
    	p := make([]int, 26)
    	for i := 1; i < 26; i++ {
    		p[i] = i
    	}
    	var find func(x int) int
    	find = func(x int) int {
    		if p[x] != x {
    			p[x] = find(p[x])
    		}
    		return p[x]
    	}
    	for _, e := range equations {
    		a, b := int(e[0]-'a'), int(e[3]-'a')
    		if e[1] == '=' {
    			p[find(a)] = find(b)
    		}
    	}
    	for _, e := range equations {
    		a, b := int(e[0]-'a'), int(e[3]-'a')
    		if e[1] == '!' && find(a) == find(b) {
    			return false
    		}
    	}
    	return true
    }
    
  • class UnionFind {
        private parent: number[];
    
        constructor() {
            this.parent = Array.from({ length: 26 }).map((_, i) => i);
        }
    
        find(index: number) {
            if (this.parent[index] === index) {
                return index;
            }
            this.parent[index] = this.find(this.parent[index]);
            return this.parent[index];
        }
    
        union(index1: number, index2: number) {
            this.parent[this.find(index1)] = this.find(index2);
        }
    }
    
    function equationsPossible(equations: string[]): boolean {
        const uf = new UnionFind();
        for (const [a, s, _, b] of equations) {
            if (s === '=') {
                const index1 = a.charCodeAt(0) - 'a'.charCodeAt(0);
                const index2 = b.charCodeAt(0) - 'a'.charCodeAt(0);
                uf.union(index1, index2);
            }
        }
        for (const [a, s, _, b] of equations) {
            if (s === '!') {
                const index1 = a.charCodeAt(0) - 'a'.charCodeAt(0);
                const index2 = b.charCodeAt(0) - 'a'.charCodeAt(0);
                if (uf.find(index1) === uf.find(index2)) {
                    return false;
                }
            }
        }
        return true;
    }
    
    

All Problems

All Solutions