Formatted question description: https://leetcode.ca/all/987.html
987. Vertical Order Traversal of a Binary Tree (Medium)
Given a binary tree, return the vertical order traversal of its nodes values.
For each node at position (X, Y)
, its left and right children respectively will be at positions (X-1, Y-1)
and (X+1, Y-1)
.
Running a vertical line from X = -infinity
to X = +infinity
, whenever the vertical line touches some nodes, we report the values of the nodes in order from top to bottom (decreasing Y
coordinates).
If two nodes have the same position, then the value of the node that is reported first is the value that is smaller.
Return an list of non-empty reports in order of X
coordinate. Every report will have a list of values of nodes.
Example 1:
Input: [3,9,20,null,null,15,7] Output: [[9],[3,15],[20],[7]] Explanation: Without loss of generality, we can assume the root node is at position (0, 0): Then, the node with value 9 occurs at position (-1, -1); The nodes with values 3 and 15 occur at positions (0, 0) and (0, -2); The node with value 20 occurs at position (1, -1); The node with value 7 occurs at position (2, -2).
Example 2:
Input: [1,2,3,4,5,6,7] Output: [[4],[2],[1,5,6],[3],[7]] Explanation: The node with value 5 and the node with value 6 have the same position according to the given scheme. However, in the report "[1,5,6]", the node value of 5 comes first since 5 is smaller than 6.
Note:
- The tree will have between 1 and
1000
nodes. - Each node's value will be between
0
and1000
.
Related Topics:
Hash Table, Tree
Solution 1.
Use a map<int, map<int, multiset<int>>> m
to store the values – m[node->x][node->y].insert(node->val)
. (Using set
instead of multiset
can also pass this problem. I guess LeetCode uses the node values as IDs and assumes the uniqueness of the values. I used multiset
here to be safe.)
In this way, the values are sorted first in asending order of the x
values, then in asending order of y
values, then in asending order of node values.
Note that we shouldn’t sort the values with the same X values all together, we should only sort them if they have the same position, i.e. when both their x
and y
values are equal.
// OJ: https://leetcode.com/problems/vertical-order-traversal-of-a-binary-tree/
// Time: O(NlogN)
// Space: O(N)
class Solution {
map<int, map<int, multiset<int>>> m;
void dfs(TreeNode *root, int x, int y) {
if (!root) return;
m[x][y].insert(root->val);
dfs(root->left, x - 1, y + 1);
dfs(root->right, x + 1, y + 1);
}
public:
vector<vector<int>> verticalTraversal(TreeNode* root) {
dfs(root, 0, 0);
vector<vector<int>> ans;
for (auto &[x, mm] : m) {
ans.emplace_back();
for (auto &[y, vals] : mm) {
for (int n : vals) ans.back().push_back(n);
}
}
return ans;
}
};
Java
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public List<List<Integer>> verticalTraversal(TreeNode root) { List<List<Integer>> verticalTraversal = new ArrayList<List<Integer>>(); if (root == null) return verticalTraversal; Queue<TreeNode> queue = new LinkedList<TreeNode>(); Queue<Struct> structQueue = new LinkedList<Struct>(); queue.offer(root); Struct rootStruct = new Struct(0, 0, root.val); structQueue.offer(rootStruct); List<Struct> structList = new ArrayList<Struct>(); structList.add(rootStruct); while (!queue.isEmpty()) { TreeNode node = queue.poll(); Struct nodeStruct = structQueue.poll(); int position = nodeStruct.getPosition(); int depth = nodeStruct.getDepth(); TreeNode left = node.left; TreeNode right = node.right; if (left != null) { queue.offer(left); Struct leftStruct = new Struct(position - 1, depth + 1, left.val); structQueue.offer(leftStruct); structList.add(leftStruct); } if (right != null) { queue.offer(right); Struct rightStruct = new Struct(position + 1, depth + 1, right.val); structQueue.offer(rightStruct); structList.add(rightStruct); } } Collections.sort(structList); int size = structList.size(); int index = 0; int prevPosition = Integer.MAX_VALUE; while (index < size) { Struct struct = structList.get(index); int position = struct.getPosition(); if (position == prevPosition) { int totalSize = verticalTraversal.size(); List<Integer> previousList = verticalTraversal.remove(totalSize - 1); previousList.add(struct.getValue()); verticalTraversal.add(previousList); } else { List<Integer> currentList = new ArrayList<Integer>(); currentList.add(struct.getValue()); verticalTraversal.add(currentList); } prevPosition = position; index++; } return verticalTraversal; } } class Struct implements Comparable<Struct> { private int position; private int depth; private int value; public Struct() { } public Struct(int position, int depth, int value) { this.position = position; this.depth = depth; this.value = value; } public int compareTo(Struct struct2) { if (this.position != struct2.position) return this.position - struct2.position; else if (this.depth != struct2.depth) return this.depth - struct2.depth; else return this.value - struct2.value; } public int getPosition() { return position; } public int getDepth() { return depth; } public int getValue() { return value; } }
-
// OJ: https://leetcode.com/problems/vertical-order-traversal-of-a-binary-tree/ // Time: O(NlogN) // Space: O(N) class Solution { map<int, map<int, multiset<int>>> m; void dfs(TreeNode *root, int x, int y) { if (!root) return; m[x][y].insert(root->val); dfs(root->left, x - 1, y + 1); dfs(root->right, x + 1, y + 1); } public: vector<vector<int>> verticalTraversal(TreeNode* root) { dfs(root, 0, 0); vector<vector<int>> ans; for (auto &[x, mm] : m) { ans.emplace_back(); for (auto &[y, vals] : mm) { for (int n : vals) ans.back().push_back(n); } } return ans; } };
-
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def verticalTraversal(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ self.m_ = list() self.dfs(root, 0, 0) self.m_.sort() res = [[self.m_[0][2]]] for i in range(1, len(self.m_)): if self.m_[i][0] == self.m_[i - 1][0]: res[-1].append(self.m_[i][2]) else: res.append([self.m_[i][2]]) return res def dfs(self, root, x, y): if not root: return self.m_.append((x, -y, root.val)) self.dfs(root.left, x - 1, y - 1) self.dfs(root.right, x + 1, y - 1)