Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/978.html

978. Longest Turbulent Subarray (Medium)

A subarray A[i], A[i+1], ..., A[j] of A is said to be turbulent if and only if:

  • For i <= k < j, A[k] > A[k+1] when k is odd, and A[k] < A[k+1] when k is even;
  • OR, for i <= k < j, A[k] > A[k+1] when k is even, and A[k] < A[k+1] when k is odd.

That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.

Return the length of a maximum size turbulent subarray of A.

 

Example 1:

Input: [9,4,2,10,7,8,8,1,9]
Output: 5
Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])

Example 2:

Input: [4,8,12,16]
Output: 2

Example 3:

Input: [100]
Output: 1

 

Note:

  1. 1 <= A.length <= 40000
  2. 0 <= A[i] <= 10^9

Related Topics:
Array, Dynamic Programming, Sliding Window

Similar Questions:

Solution 1.

// OJ: https://leetcode.com/problems/longest-turbulent-subarray/
// Time: O(N)
// Space: O(1)
class Solution {
    inline int getSign(int n) { return n > 0 ? 1 : (n == 0 ? 0 : -1); }
public:
    int maxTurbulenceSize(vector<int>& A) {
        if (A.size() == 1) return 1;
        int sign = getSign(A[0] - A[1]), start = 0, ans = sign ? 2 : 1;
        for (int i = 2; i < A.size(); ++i) {
            int next = getSign(A[i - 1] - A[i]);
            if (next * sign >= 0) start = i - 1;
            else ans = max(ans, i - start + 1);
            sign = next;
        }
        return ans;
    }
};
  • class Solution {
        public int maxTurbulenceSize(int[] A) {
            if (A == null)
                return 0;
            int length = A.length;
            if (length < 2)
                return length;
            int start = 0;
            while (start < length - 1 && A[start] == A[start + 1])
                start++;
            if (start == length - 1)
                return 1;
            int maxSize = 2;
            int difference = A[start + 1] - A[start];
            if (difference > 0)
                difference = 1;
            else
                difference = -1;
            int index = start + 2;
            while (index < length) {
                int curDifference = A[index] - A[index - 1];
                if (curDifference * difference >= 0) {
                    maxSize = Math.max(maxSize, index - start);
                    start = index - 1;
                    while (start < length - 1 && A[start] == A[start + 1])
                        start++;
                    if (start == length - 1)
                        break;
                    int nextDifference = A[start + 1] - A[start];
                    difference = nextDifference > 0 ? 1 : -1;
                    index = start + 2;
                } else {
                    index++;
                    difference = -difference;
                }
            }
            maxSize = Math.max(maxSize, index - start);
            return maxSize;
        }
    }
    
    ############
    
    class Solution {
        public int maxTurbulenceSize(int[] arr) {
            int ans = 1, f = 1, g = 1;
            for (int i = 1; i < arr.length; ++i) {
                int ff = arr[i - 1] < arr[i] ? g + 1 : 1;
                int gg = arr[i - 1] > arr[i] ? f + 1 : 1;
                f = ff;
                g = gg;
                ans = Math.max(ans, Math.max(f, g));
            }
            return ans;
        }
    }
    
  • // OJ: https://leetcode.com/problems/longest-turbulent-subarray/
    // Time: O(N)
    // Space: O(1)
    class Solution {
    public:
        int maxTurbulenceSize(vector<int>& A) {
            int inc = 1, dec = 1, N = A.size(), ans = 1;
            for (int i = 1; i < N; ++i) {
                if (A[i] == A[i - 1]) inc = dec = 1;
                else if (A[i] > A[i - 1]) {
                    inc = dec + 1;
                    dec = 1;
                } else {
                    dec = inc + 1;
                    inc = 1;
                }
                ans = max({ ans, inc, dec });
            }
            return ans;
        }
    };
    
  • # 978. Longest Turbulent Subarray
    # https://leetcode.com/problems/longest-turbulent-subarray/
    
    class Solution:
        def maxTurbulenceSize(self, arr: List[int]) -> int:
            n = len(arr)
            res = curr = 0
    
            for i in range(n):
                if i >= 2 and ((arr[i - 2] > arr[i - 1] < arr[i]) or (arr[i - 2] < arr[i - 1] > arr[i])):
                    curr += 1
                elif i >= 1 and arr[i - 1] != arr[i]:
                    curr = 2
                else:
                    curr = 1
                
                res = max(res, curr)
            
            return res
    
    
  • func maxTurbulenceSize(arr []int) int {
    	ans, f, g := 1, 1, 1
    	for i, x := range arr[1:] {
    		ff, gg := 1, 1
    		if arr[i] < x {
    			ff = g + 1
    		}
    		if arr[i] > x {
    			gg = f + 1
    		}
    		f, g = ff, gg
    		ans = max(ans, max(f, g))
    	}
    	return ans
    }
    
    func max(a, b int) int {
    	if a > b {
    		return a
    	}
    	return b
    }
    
  • function maxTurbulenceSize(arr: number[]): number {
        let f = 1;
        let g = 1;
        let ans = 1;
        for (let i = 1; i < arr.length; ++i) {
            const ff = arr[i - 1] < arr[i] ? g + 1 : 1;
            const gg = arr[i - 1] > arr[i] ? f + 1 : 1;
            f = ff;
            g = gg;
            ans = Math.max(ans, f, g);
        }
        return ans;
    }
    
    

All Problems

All Solutions