Welcome to Subscribe On Youtube
978. Longest Turbulent Subarray
Description
Given an integer array arr
, return the length of a maximum size turbulent subarray of arr
.
A subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
More formally, a subarray [arr[i], arr[i + 1], ..., arr[j]]
of arr
is said to be turbulent if and only if:
- For
i <= k < j
:arr[k] > arr[k + 1]
whenk
is odd, andarr[k] < arr[k + 1]
whenk
is even.
- Or, for
i <= k < j
:arr[k] > arr[k + 1]
whenk
is even, andarr[k] < arr[k + 1]
whenk
is odd.
Example 1:
Input: arr = [9,4,2,10,7,8,8,1,9] Output: 5 Explanation: arr[1] > arr[2] < arr[3] > arr[4] < arr[5]
Example 2:
Input: arr = [4,8,12,16] Output: 2
Example 3:
Input: arr = [100] Output: 1
Constraints:
1 <= arr.length <= 4 * 104
0 <= arr[i] <= 109
Solutions
-
class Solution { public int maxTurbulenceSize(int[] arr) { int ans = 1, f = 1, g = 1; for (int i = 1; i < arr.length; ++i) { int ff = arr[i - 1] < arr[i] ? g + 1 : 1; int gg = arr[i - 1] > arr[i] ? f + 1 : 1; f = ff; g = gg; ans = Math.max(ans, Math.max(f, g)); } return ans; } }
-
class Solution { public: int maxTurbulenceSize(vector<int>& arr) { int ans = 1, f = 1, g = 1; for (int i = 1; i < arr.size(); ++i) { int ff = arr[i - 1] < arr[i] ? g + 1 : 1; int gg = arr[i - 1] > arr[i] ? f + 1 : 1; f = ff; g = gg; ans = max({ans, f, g}); } return ans; } };
-
class Solution: def maxTurbulenceSize(self, arr: List[int]) -> int: ans = f = g = 1 for a, b in pairwise(arr): ff = g + 1 if a < b else 1 gg = f + 1 if a > b else 1 f, g = ff, gg ans = max(ans, f, g) return ans
-
func maxTurbulenceSize(arr []int) int { ans, f, g := 1, 1, 1 for i, x := range arr[1:] { ff, gg := 1, 1 if arr[i] < x { ff = g + 1 } if arr[i] > x { gg = f + 1 } f, g = ff, gg ans = max(ans, max(f, g)) } return ans }
-
function maxTurbulenceSize(arr: number[]): number { let f = 1; let g = 1; let ans = 1; for (let i = 1; i < arr.length; ++i) { const ff = arr[i - 1] < arr[i] ? g + 1 : 1; const gg = arr[i - 1] > arr[i] ? f + 1 : 1; f = ff; g = gg; ans = Math.max(ans, f, g); } return ans; }