Welcome to Subscribe On Youtube
976. Largest Perimeter Triangle
Description
Given an integer array nums
, return the largest perimeter of a triangle with a non-zero area, formed from three of these lengths. If it is impossible to form any triangle of a non-zero area, return 0
.
Example 1:
Input: nums = [2,1,2] Output: 5 Explanation: You can form a triangle with three side lengths: 1, 2, and 2.
Example 2:
Input: nums = [1,2,1,10] Output: 0 Explanation: You cannot use the side lengths 1, 1, and 2 to form a triangle. You cannot use the side lengths 1, 1, and 10 to form a triangle. You cannot use the side lengths 1, 2, and 10 to form a triangle. As we cannot use any three side lengths to form a triangle of non-zero area, we return 0.
Constraints:
3 <= nums.length <= 104
1 <= nums[i] <= 106
Solutions
-
class Solution { public int largestPerimeter(int[] nums) { Arrays.sort(nums); for (int i = nums.length - 1; i >= 2; --i) { int c = nums[i - 1] + nums[i - 2]; if (c > nums[i]) { return c + nums[i]; } } return 0; } }
-
class Solution { public: int largestPerimeter(vector<int>& nums) { sort(nums.begin(), nums.end()); for (int i = nums.size() - 1; i >= 2; --i) { int c = nums[i - 1] + nums[i - 2]; if (c > nums[i]) return c + nums[i]; } return 0; } };
-
class Solution: def largestPerimeter(self, nums: List[int]) -> int: nums.sort() for i in range(len(nums) - 1, 1, -1): if (c := nums[i - 1] + nums[i - 2]) > nums[i]: return c + nums[i] return 0
-
func largestPerimeter(nums []int) int { sort.Ints(nums) for i := len(nums) - 1; i >= 2; i-- { c := nums[i-1] + nums[i-2] if c > nums[i] { return c + nums[i] } } return 0 }
-
function largestPerimeter(nums: number[]): number { const n = nums.length; nums.sort((a, b) => b - a); for (let i = 2; i < n; i++) { const [a, b, c] = [nums[i - 2], nums[i - 1], nums[i]]; if (a < b + c) { return a + b + c; } } return 0; }
-
impl Solution { pub fn largest_perimeter(mut nums: Vec<i32>) -> i32 { let n = nums.len(); nums.sort_unstable_by(|a, b| b.cmp(&a)); for i in 2..n { let (a, b, c) = (nums[i - 2], nums[i - 1], nums[i]); if a < b + c { return a + b + c; } } 0 } }