Welcome to Subscribe On Youtube

976. Largest Perimeter Triangle

Description

Given an integer array nums, return the largest perimeter of a triangle with a non-zero area, formed from three of these lengths. If it is impossible to form any triangle of a non-zero area, return 0.

 

Example 1:

Input: nums = [2,1,2]
Output: 5
Explanation: You can form a triangle with three side lengths: 1, 2, and 2.

Example 2:

Input: nums = [1,2,1,10]
Output: 0
Explanation: 
You cannot use the side lengths 1, 1, and 2 to form a triangle.
You cannot use the side lengths 1, 1, and 10 to form a triangle.
You cannot use the side lengths 1, 2, and 10 to form a triangle.
As we cannot use any three side lengths to form a triangle of non-zero area, we return 0.

 

Constraints:

  • 3 <= nums.length <= 104
  • 1 <= nums[i] <= 106

Solutions

  • class Solution {
        public int largestPerimeter(int[] nums) {
            Arrays.sort(nums);
            for (int i = nums.length - 1; i >= 2; --i) {
                int c = nums[i - 1] + nums[i - 2];
                if (c > nums[i]) {
                    return c + nums[i];
                }
            }
            return 0;
        }
    }
    
  • class Solution {
    public:
        int largestPerimeter(vector<int>& nums) {
            sort(nums.begin(), nums.end());
            for (int i = nums.size() - 1; i >= 2; --i) {
                int c = nums[i - 1] + nums[i - 2];
                if (c > nums[i]) return c + nums[i];
            }
            return 0;
        }
    };
    
  • class Solution:
        def largestPerimeter(self, nums: List[int]) -> int:
            nums.sort()
            for i in range(len(nums) - 1, 1, -1):
                if (c := nums[i - 1] + nums[i - 2]) > nums[i]:
                    return c + nums[i]
            return 0
    
    
  • func largestPerimeter(nums []int) int {
    	sort.Ints(nums)
    	for i := len(nums) - 1; i >= 2; i-- {
    		c := nums[i-1] + nums[i-2]
    		if c > nums[i] {
    			return c + nums[i]
    		}
    	}
    	return 0
    }
    
  • function largestPerimeter(nums: number[]): number {
        const n = nums.length;
        nums.sort((a, b) => b - a);
        for (let i = 2; i < n; i++) {
            const [a, b, c] = [nums[i - 2], nums[i - 1], nums[i]];
            if (a < b + c) {
                return a + b + c;
            }
        }
        return 0;
    }
    
    
  • impl Solution {
        pub fn largest_perimeter(mut nums: Vec<i32>) -> i32 {
            let n = nums.len();
            nums.sort_unstable_by(|a, b| b.cmp(&a));
            for i in 2..n {
                let (a, b, c) = (nums[i - 2], nums[i - 1], nums[i]);
                if a < b + c {
                    return a + b + c;
                }
            }
            0
        }
    }
    
    

All Problems

All Solutions