Welcome to Subscribe On Youtube

952. Largest Component Size by Common Factor

Description

You are given an integer array of unique positive integers nums. Consider the following graph:

  • There are nums.length nodes, labeled nums[0] to nums[nums.length - 1],
  • There is an undirected edge between nums[i] and nums[j] if nums[i] and nums[j] share a common factor greater than 1.

Return the size of the largest connected component in the graph.

 

Example 1:

Input: nums = [4,6,15,35]
Output: 4

Example 2:

Input: nums = [20,50,9,63]
Output: 2

Example 3:

Input: nums = [2,3,6,7,4,12,21,39]
Output: 8

 

Constraints:

  • 1 <= nums.length <= 2 * 104
  • 1 <= nums[i] <= 105
  • All the values of nums are unique.

Solutions

  • class UnionFind {
        int[] p;
    
        UnionFind(int n) {
            p = new int[n];
            for (int i = 0; i < n; ++i) {
                p[i] = i;
            }
        }
    
        void union(int a, int b) {
            int pa = find(a), pb = find(b);
            if (pa != pb) {
                p[pa] = pb;
            }
        }
    
        int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    }
    
    class Solution {
        public int largestComponentSize(int[] nums) {
            int m = 0;
            for (int v : nums) {
                m = Math.max(m, v);
            }
            UnionFind uf = new UnionFind(m + 1);
            for (int v : nums) {
                int i = 2;
                while (i <= v / i) {
                    if (v % i == 0) {
                        uf.union(v, i);
                        uf.union(v, v / i);
                    }
                    ++i;
                }
            }
            int[] cnt = new int[m + 1];
            int ans = 0;
            for (int v : nums) {
                int t = uf.find(v);
                ++cnt[t];
                ans = Math.max(ans, cnt[t]);
            }
            return ans;
        }
    }
    
  • class UnionFind {
    public:
        vector<int> p;
        int n;
    
        UnionFind(int _n)
            : n(_n)
            , p(_n) {
            iota(p.begin(), p.end(), 0);
        }
    
        void unite(int a, int b) {
            int pa = find(a), pb = find(b);
            if (pa != pb) p[pa] = pb;
        }
    
        int find(int x) {
            if (p[x] != x) p[x] = find(p[x]);
            return p[x];
        }
    };
    
    class Solution {
    public:
        int largestComponentSize(vector<int>& nums) {
            int m = *max_element(nums.begin(), nums.end());
            UnionFind* uf = new UnionFind(m + 1);
            for (int v : nums) {
                int i = 2;
                while (i <= v / i) {
                    if (v % i == 0) {
                        uf->unite(v, i);
                        uf->unite(v, v / i);
                    }
                    ++i;
                }
            }
            vector<int> cnt(m + 1);
            int ans = 0;
            for (int v : nums) {
                int t = uf->find(v);
                ++cnt[t];
                ans = max(ans, cnt[t]);
            }
            return ans;
        }
    };
    
  • class UnionFind:
        def __init__(self, n):
            self.p = list(range(n))
    
        def union(self, a, b):
            pa, pb = self.find(a), self.find(b)
            if pa != pb:
                self.p[pa] = pb
    
        def find(self, x):
            if self.p[x] != x:
                self.p[x] = self.find(self.p[x])
            return self.p[x]
    
    
    class Solution:
        def largestComponentSize(self, nums: List[int]) -> int:
            uf = UnionFind(max(nums) + 1)
            for v in nums:
                i = 2
                while i <= v // i:
                    if v % i == 0:
                        uf.union(v, i)
                        uf.union(v, v // i)
                    i += 1
            return max(Counter(uf.find(v) for v in nums).values())
    
    
  • func largestComponentSize(nums []int) int {
    	m := slices.Max(nums)
    	p := make([]int, m+1)
    	for i := range p {
    		p[i] = i
    	}
    	var find func(int) int
    	find = func(x int) int {
    		if p[x] != x {
    			p[x] = find(p[x])
    		}
    		return p[x]
    	}
    	union := func(a, b int) {
    		pa, pb := find(a), find(b)
    		if pa != pb {
    			p[pa] = pb
    		}
    	}
    	for _, v := range nums {
    		i := 2
    		for i <= v/i {
    			if v%i == 0 {
    				union(v, i)
    				union(v, v/i)
    			}
    			i++
    		}
    	}
    	cnt := make([]int, m+1)
    	for _, v := range nums {
    		t := find(v)
    		cnt[t]++
    	}
    	return slices.Max(cnt)
    }
    

All Problems

All Solutions