Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/951.html
951. Flip Equivalent Binary Trees (Medium)
For a binary tree T, we can define a flip operation as follows: choose any node, and swap the left and right child subtrees.
A binary tree X is flip equivalent to a binary tree Y if and only if we can make X equal to Y after some number of flip operations.
Write a function that determines whether two binary trees are flip equivalent. The trees are given by root nodes root1
and root2
.
Example 1:
Input: root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7] Output: true Explanation: We flipped at nodes with values 1, 3, and 5.![]()
Note:
- Each tree will have at most
100
nodes. - Each value in each tree will be a unique integer in the range
[0, 99]
.
Related Topics:
Tree
Solution 1.
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public boolean flipEquiv(TreeNode root1, TreeNode root2) { if (root1 == null && root2 == null) return true; if (root1 == null ^ root2 == null) return false; Queue<TreeNode> queue1 = new LinkedList<TreeNode>(); Queue<TreeNode> queue2 = new LinkedList<TreeNode>(); queue1.offer(root1); queue2.offer(root2); while (!queue1.isEmpty()) { if (queue2.isEmpty()) return false; TreeNode node1 = queue1.poll(), node2 = queue2.poll(); if (node1.val != node2.val) return false; TreeNode left1 = node1.left, right1 = node1.right, left2 = node2.left, right2 = node2.right; if (left1 == null && right1 == null) { if (left2 != null || right2 != null) return false; } else { if (left1 == null) { left1 = right1; right1 = null; } if (left2 == null) { left2 = right2; right2 = null; } if (left1 == null ^ left2 == null) return false; if (right1 == null ^ right2 == null) return false; if (right1 == null && left1.val != left2.val) return false; if (left1 != null && right1 != null) { if (left1.val == right2.val) { TreeNode temp = left2; left2 = right2; right2 = temp; } } if (left1 != null) queue1.offer(left1); if (right1 != null) queue1.offer(right1); if (left2 != null) queue2.offer(left2); if (right2 != null) queue2.offer(right2); } } return queue2.isEmpty(); } } ############ /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public boolean flipEquiv(TreeNode root1, TreeNode root2) { return dfs(root1, root2); } private boolean dfs(TreeNode root1, TreeNode root2) { if (root1 == root2 || (root1 == null && root2 == null)) { return true; } if (root1 == null || root2 == null || root1.val != root2.val) { return false; } return (dfs(root1.left, root2.left) && dfs(root1.right, root2.right)) || (dfs(root1.left, root2.right) && dfs(root1.right, root2.left)); } }
-
// OJ: https://leetcode.com/problems/flip-equivalent-binary-trees/ // Time: O(N) // Space: O(logN) class Solution { public: bool flipEquiv(TreeNode* root1, TreeNode* root2) { if (!root1 && !root2) return true; if (!root1 || !root2) return false; if (root1->val != root2->val) return false; return (flipEquiv(root1->left, root2->left) && flipEquiv(root1->right, root2->right)) || (flipEquiv(root1->left, root2->right) && flipEquiv(root1->right, root2->left)); } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def flipEquiv(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool: def dfs(root1, root2): if root1 == root2 or (root1 is None and root2 is None): return True if root1 is None or root2 is None or root1.val != root2.val: return False return (dfs(root1.left, root2.left) and dfs(root1.right, root2.right)) or ( dfs(root1.left, root2.right) and dfs(root1.right, root2.left) ) return dfs(root1, root2) ############ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def flipEquiv(self, root1, root2): """ :type root1: TreeNode :type root2: TreeNode :rtype: bool """ if not root1 and not root2: return True if not root1 and root2: return False if root1 and not root2: return False if root1.val != root2.val: return False return (self.flipEquiv(root1.left, root2.right) and self.flipEquiv(root1.right, root2.left)) or (self.flipEquiv(root1.left, root2.left) and self.flipEquiv(root1.right, root2.right))
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func flipEquiv(root1 *TreeNode, root2 *TreeNode) bool { var dfs func(root1, root2 *TreeNode) bool dfs = func(root1, root2 *TreeNode) bool { if root1 == root2 || (root1 == nil && root2 == nil) { return true } if root1 == nil || root2 == nil || root1.Val != root2.Val { return false } return (dfs(root1.Left, root2.Left) && dfs(root1.Right, root2.Right)) || (dfs(root1.Left, root2.Right) && dfs(root1.Right, root2.Left)) } return dfs(root1, root2) }