Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/951.html

951. Flip Equivalent Binary Trees (Medium)

For a binary tree T, we can define a flip operation as follows: choose any node, and swap the left and right child subtrees.

A binary tree X is flip equivalent to a binary tree Y if and only if we can make X equal to Y after some number of flip operations.

Write a function that determines whether two binary trees are flip equivalent.  The trees are given by root nodes root1 and root2.

 

Example 1:

Input: root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7]
Output: true
Explanation: We flipped at nodes with values 1, 3, and 5.
Flipped Trees Diagram

 

Note:

  1. Each tree will have at most 100 nodes.
  2. Each value in each tree will be a unique integer in the range [0, 99].

 

Related Topics:
Tree

Solution 1.

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    class Solution {
        public boolean flipEquiv(TreeNode root1, TreeNode root2) {
            if (root1 == null && root2 == null)
                return true;
            if (root1 == null ^ root2 == null)
                return false;
            Queue<TreeNode> queue1 = new LinkedList<TreeNode>();
            Queue<TreeNode> queue2 = new LinkedList<TreeNode>();
            queue1.offer(root1);
            queue2.offer(root2);
            while (!queue1.isEmpty()) {
                if (queue2.isEmpty())
                    return false;
                TreeNode node1 = queue1.poll(), node2 = queue2.poll();
                if (node1.val != node2.val)
                    return false;
                TreeNode left1 = node1.left, right1 = node1.right, left2 = node2.left, right2 = node2.right;
                if (left1 == null && right1 == null) {
                    if (left2 != null || right2 != null)
                        return false;
                } else {
                    if (left1 == null) {
                        left1 = right1;
                        right1 = null;
                    }
                    if (left2 == null) {
                        left2 = right2;
                        right2 = null;
                    }
                    if (left1 == null ^ left2 == null)
                        return false;
                    if (right1 == null ^ right2 == null)
                        return false;
                    if (right1 == null && left1.val != left2.val)
                        return false;
                    if (left1 != null && right1 != null) {
                        if (left1.val == right2.val) {
                            TreeNode temp = left2;
                            left2 = right2;
                            right2 = temp;
                        }
                    }
                    if (left1 != null)
                        queue1.offer(left1);
                    if (right1 != null)
                        queue1.offer(right1);
                    if (left2 != null)
                        queue2.offer(left2);
                    if (right2 != null)
                        queue2.offer(right2);
                }
            }
            return queue2.isEmpty();
        }
    }
    
    ############
    
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public boolean flipEquiv(TreeNode root1, TreeNode root2) {
            return dfs(root1, root2);
        }
    
        private boolean dfs(TreeNode root1, TreeNode root2) {
            if (root1 == root2 || (root1 == null && root2 == null)) {
                return true;
            }
            if (root1 == null || root2 == null || root1.val != root2.val) {
                return false;
            }
            return (dfs(root1.left, root2.left) && dfs(root1.right, root2.right))
                || (dfs(root1.left, root2.right) && dfs(root1.right, root2.left));
        }
    }
    
  • // OJ: https://leetcode.com/problems/flip-equivalent-binary-trees/
    // Time: O(N)
    // Space: O(logN)
    class Solution {
    public:
        bool flipEquiv(TreeNode* root1, TreeNode* root2) {
            if (!root1 && !root2) return true;
            if (!root1 || !root2) return false;
            if (root1->val != root2->val) return false;
            return (flipEquiv(root1->left, root2->left) && flipEquiv(root1->right, root2->right))
                || (flipEquiv(root1->left, root2->right) && flipEquiv(root1->right, root2->left));
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def flipEquiv(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> bool:
            def dfs(root1, root2):
                if root1 == root2 or (root1 is None and root2 is None):
                    return True
                if root1 is None or root2 is None or root1.val != root2.val:
                    return False
                return (dfs(root1.left, root2.left) and dfs(root1.right, root2.right)) or (
                    dfs(root1.left, root2.right) and dfs(root1.right, root2.left)
                )
    
            return dfs(root1, root2)
    
    ############
    
    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class Solution(object):
        def flipEquiv(self, root1, root2):
            """
            :type root1: TreeNode
            :type root2: TreeNode
            :rtype: bool
            """
            if not root1 and not root2: return True
            if not root1 and root2: return False
            if root1 and not root2: return False
            if root1.val != root2.val: return False
            return (self.flipEquiv(root1.left, root2.right) and self.flipEquiv(root1.right, root2.left)) or (self.flipEquiv(root1.left, root2.left) and self.flipEquiv(root1.right, root2.right))
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func flipEquiv(root1 *TreeNode, root2 *TreeNode) bool {
    	var dfs func(root1, root2 *TreeNode) bool
    	dfs = func(root1, root2 *TreeNode) bool {
    		if root1 == root2 || (root1 == nil && root2 == nil) {
    			return true
    		}
    		if root1 == nil || root2 == nil || root1.Val != root2.Val {
    			return false
    		}
    		return (dfs(root1.Left, root2.Left) && dfs(root1.Right, root2.Right)) || (dfs(root1.Left, root2.Right) && dfs(root1.Right, root2.Left))
    	}
    	return dfs(root1, root2)
    }
    

All Problems

All Solutions