Welcome to Subscribe On Youtube

919. Complete Binary Tree Inserter

Description

A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

Design an algorithm to insert a new node to a complete binary tree keeping it complete after the insertion.

Implement the CBTInserter class:

  • CBTInserter(TreeNode root) Initializes the data structure with the root of the complete binary tree.
  • int insert(int v) Inserts a TreeNode into the tree with value Node.val == val so that the tree remains complete, and returns the value of the parent of the inserted TreeNode.
  • TreeNode get_root() Returns the root node of the tree.

 

Example 1:

Input
["CBTInserter", "insert", "insert", "get_root"]
[[[1, 2]], [3], [4], []]
Output
[null, 1, 2, [1, 2, 3, 4]]

Explanation
CBTInserter cBTInserter = new CBTInserter([1, 2]);
cBTInserter.insert(3); // return 1
cBTInserter.insert(4); // return 2
cBTInserter.get_root(); // return [1, 2, 3, 4]

 

Constraints:

  • The number of nodes in the tree will be in the range [1, 1000].
  • 0 <= Node.val <= 5000
  • root is a complete binary tree.
  • 0 <= val <= 5000
  • At most 104 calls will be made to insert and get_root.

Solutions

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class CBTInserter {
        private List<TreeNode> tree;
    
        public CBTInserter(TreeNode root) {
            tree = new ArrayList<>();
            Deque<TreeNode> q = new ArrayDeque<>();
            q.offer(root);
            while (!q.isEmpty()) {
                TreeNode node = q.pollFirst();
                tree.add(node);
                if (node.left != null) {
                    q.offer(node.left);
                }
                if (node.right != null) {
                    q.offer(node.right);
                }
            }
        }
    
        public int insert(int val) {
            int pid = (tree.size() - 1) >> 1;
            TreeNode node = new TreeNode(val);
            tree.add(node);
            TreeNode p = tree.get(pid);
            if (p.left == null) {
                p.left = node;
            } else {
                p.right = node;
            }
            return p.val;
        }
    
        public TreeNode get_root() {
            return tree.get(0);
        }
    }
    
    /**
     * Your CBTInserter object will be instantiated and called as such:
     * CBTInserter obj = new CBTInserter(root);
     * int param_1 = obj.insert(val);
     * TreeNode param_2 = obj.get_root();
     */
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class CBTInserter {
    public:
        vector<TreeNode*> tree;
    
        CBTInserter(TreeNode* root) {
            queue<TreeNode*> q{ {root} };
            while (!q.empty()) {
                auto node = q.front();
                q.pop();
                tree.push_back(node);
                if (node->left) q.push(node->left);
                if (node->right) q.push(node->right);
            }
        }
    
        int insert(int val) {
            int pid = tree.size() - 1 >> 1;
            TreeNode* node = new TreeNode(val);
            tree.push_back(node);
            TreeNode* p = tree[pid];
            if (!p->left)
                p->left = node;
            else
                p->right = node;
            return p->val;
        }
    
        TreeNode* get_root() {
            return tree[0];
        }
    };
    
    /**
     * Your CBTInserter object will be instantiated and called as such:
     * CBTInserter* obj = new CBTInserter(root);
     * int param_1 = obj->insert(val);
     * TreeNode* param_2 = obj->get_root();
     */
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class CBTInserter:
        def __init__(self, root: TreeNode):
            self.tree = []
            q = deque([root])
            while q:
                for _ in range(len(q)):
                    node = q.popleft()
                    self.tree.append(node)
                    if node.left:
                        q.append(node.left)
                    if node.right:
                        q.append(node.right)
    
        def insert(self, val: int) -> int:
            pid = (len(self.tree) - 1) >> 1
            node = TreeNode(val)
            self.tree.append(node)
            p = self.tree[pid]
            if p.left is None:
                p.left = node
            else:
                p.right = node
            return p.val
    
        def get_root(self) -> TreeNode:
            return self.tree[0]
    
    
    # Your CBTInserter object will be instantiated and called as such:
    # obj = CBTInserter(root)
    # param_1 = obj.insert(val)
    # param_2 = obj.get_root()
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    type CBTInserter struct {
    	tree []*TreeNode
    }
    
    func Constructor(root *TreeNode) CBTInserter {
    	q := []*TreeNode{root}
    	tree := []*TreeNode{}
    	for len(q) > 0 {
    		node := q[0]
    		tree = append(tree, node)
    		q = q[1:]
    		if node.Left != nil {
    			q = append(q, node.Left)
    		}
    		if node.Right != nil {
    			q = append(q, node.Right)
    		}
    	}
    	return CBTInserter{tree}
    }
    
    func (this *CBTInserter) Insert(val int) int {
    	pid := (len(this.tree) - 1) >> 1
    	node := &TreeNode{Val: val}
    	this.tree = append(this.tree, node)
    	p := this.tree[pid]
    	if p.Left == nil {
    		p.Left = node
    	} else {
    		p.Right = node
    	}
    	return p.Val
    }
    
    func (this *CBTInserter) Get_root() *TreeNode {
    	return this.tree[0]
    }
    
    /**
     * Your CBTInserter object will be instantiated and called as such:
     * obj := Constructor(root);
     * param_1 := obj.Insert(val);
     * param_2 := obj.Get_root();
     */
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    class CBTInserter {
        private root: TreeNode;
        private queue: TreeNode[];
    
        constructor(root: TreeNode | null) {
            this.root = root;
            this.queue = [this.root];
            while (true) {
                if (this.queue[0].left == null) {
                    break;
                }
                this.queue.push(this.queue[0].left);
                if (this.queue[0].right == null) {
                    break;
                }
                this.queue.push(this.queue[0].right);
                this.queue.shift();
            }
        }
    
        insert(val: number): number {
            if (this.queue[0].left != null && this.queue[0].right != null) {
                this.queue.shift();
            }
            const newNode = new TreeNode(val);
            this.queue.push(newNode);
            if (this.queue[0].left == null) {
                this.queue[0].left = newNode;
                return this.queue[0].val;
            }
            if (this.queue[0].right == null) {
                this.queue[0].right = newNode;
                return this.queue[0].val;
            }
            return 0;
        }
    
        get_root(): TreeNode | null {
            return this.root;
        }
    }
    
    /**
     * Your CBTInserter object will be instantiated and called as such:
     * var obj = new CBTInserter(root)
     * var param_1 = obj.insert(val)
     * var param_2 = obj.get_root()
     */
    
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     */
    var CBTInserter = function (root) {
        this.tree = [];
        const q = [root];
        while (q.length) {
            const node = q.shift();
            this.tree.push(node);
            if (node.left) {
                q.push(node.left);
            }
            if (node.right) {
                q.push(node.right);
            }
        }
    };
    
    /**
     * @param {number} val
     * @return {number}
     */
    CBTInserter.prototype.insert = function (val) {
        const pid = (this.tree.length - 1) >> 1;
        const node = new TreeNode(val);
        this.tree.push(node);
        const p = this.tree[pid];
        if (!p.left) {
            p.left = node;
        } else {
            p.right = node;
        }
        return p.val;
    };
    
    /**
     * @return {TreeNode}
     */
    CBTInserter.prototype.get_root = function () {
        return this.tree[0];
    };
    
    /**
     * Your CBTInserter object will be instantiated and called as such:
     * var obj = new CBTInserter(root)
     * var param_1 = obj.insert(val)
     * var param_2 = obj.get_root()
     */
    
    

All Problems

All Solutions