Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/915.html
915. Partition Array into Disjoint Intervals
Level
Medium
Description
Given an array A
, partition it into two (contiguous) subarrays left
and right
so that:
- Every element in
left
is less than or equal to every element inright
. left
andright
are non-empty.left
has the smallest possible size.
Return the length of left
after such a partitioning. It is guaranteed that such a partitioning exists.
Example 1:
Input: [5,0,3,8,6]
Output: 3
Explanation: left = [5,0,3], right = [8,6]
Example 2:
Input: [1,1,1,0,6,12]
Output: 4
Explanation: left = [1,1,1,0], right = [6,12]
Note:
2 <= A.length <= 30000
0 <= A[i] <= 10^6
- It is guaranteed there is at least one way to partition
A
as described.
Solution
Create an array minRight
that has the same length as A
, where minRight[i]
represents the minimum element in the subarray A[i..A.length-1]
. Then loop over A
from left to right and maintain the maximum element met so far, which is maxLeft
. Once an index
such that maxLeft <= minRight[index + 1]
is met, return index + 1
. Since it is guaranteed that such a partitioning exists, the maximum possible return value is A.length - 1
.
-
class Solution { public int partitionDisjoint(int[] A) { int length = A.length; int[] minRight = new int[length]; minRight[length - 1] = A[length - 1]; for (int i = length - 2; i >= 0; i--) minRight[i] = Math.min(minRight[i + 1], A[i]); int maxLeft = Integer.MIN_VALUE; for (int i = 0; i < length - 1; i++) { maxLeft = Math.max(maxLeft, A[i]); if (maxLeft <= minRight[i + 1]) return i + 1; } return length - 1; } }
-
// OJ: https://leetcode.com/problems/partition-array-into-disjoint-intervals/ // Time: O(N) // Space: O(N) class Solution { public: int partitionDisjoint(vector<int>& A) { deque<int> q; // index int N = A.size(), mx = 0; for (int i = 0; i < N; ++i) { while (q.size() && A[q.back()] >= A[i]) q.pop_back(); q.push_back(i); } for (int i = 0; i < N; ++i) { if (q.front() == i) q.pop_front(); mx = max(mx, A[i]); if (mx <= A[q.front()]) return i + 1; } return -1; } };
-
class Solution: def partitionDisjoint(self, nums: List[int]) -> int: n = len(nums) mi = [inf] * (n + 1) for i in range(n - 1, -1, -1): mi[i] = min(nums[i], mi[i + 1]) mx = 0 for i, v in enumerate(nums, 1): mx = max(mx, v) if mx <= mi[i]: return i ############ class Solution(object): def partitionDisjoint(self, A): """ :type A: List[int] :rtype: int """ disjoint = 0 v = A[0] max_so_far = v for i in range(len(A)): max_so_far = max(max_so_far, A[i]) if A[i] < v: v = max_so_far disjoint = i return disjoint + 1
-
func partitionDisjoint(nums []int) int { n := len(nums) mi := make([]int, n+1) mi[n] = nums[n-1] for i := n - 1; i >= 0; i-- { mi[i] = min(nums[i], mi[i+1]) } mx := 0 for i := 1; i <= n; i++ { v := nums[i-1] mx = max(mx, v) if mx <= mi[i] { return i } } return 0 } func max(a, b int) int { if a > b { return a } return b } func min(a, b int) int { if a < b { return a } return b }