Welcome to Subscribe On Youtube
915. Partition Array into Disjoint Intervals
Description
Given an integer array nums
, partition it into two (contiguous) subarrays left
and right
so that:
- Every element in
left
is less than or equal to every element inright
. left
andright
are non-empty.left
has the smallest possible size.
Return the length of left
after such a partitioning.
Test cases are generated such that partitioning exists.
Example 1:
Input: nums = [5,0,3,8,6] Output: 3 Explanation: left = [5,0,3], right = [8,6]
Example 2:
Input: nums = [1,1,1,0,6,12] Output: 4 Explanation: left = [1,1,1,0], right = [6,12]
Constraints:
2 <= nums.length <= 105
0 <= nums[i] <= 106
- There is at least one valid answer for the given input.
Solutions
-
class Solution { public int partitionDisjoint(int[] nums) { int n = nums.length; int[] mi = new int[n + 1]; mi[n] = nums[n - 1]; for (int i = n - 1; i >= 0; --i) { mi[i] = Math.min(nums[i], mi[i + 1]); } int mx = 0; for (int i = 1; i <= n; ++i) { int v = nums[i - 1]; mx = Math.max(mx, v); if (mx <= mi[i]) { return i; } } return 0; } }
-
class Solution { public: int partitionDisjoint(vector<int>& nums) { int n = nums.size(); vector<int> mi(n + 1, INT_MAX); for (int i = n - 1; ~i; --i) mi[i] = min(nums[i], mi[i + 1]); int mx = 0; for (int i = 1; i <= n; ++i) { int v = nums[i - 1]; mx = max(mx, v); if (mx <= mi[i]) return i; } return 0; } };
-
class Solution: def partitionDisjoint(self, nums: List[int]) -> int: n = len(nums) mi = [inf] * (n + 1) for i in range(n - 1, -1, -1): mi[i] = min(nums[i], mi[i + 1]) mx = 0 for i, v in enumerate(nums, 1): mx = max(mx, v) if mx <= mi[i]: return i
-
func partitionDisjoint(nums []int) int { n := len(nums) mi := make([]int, n+1) mi[n] = nums[n-1] for i := n - 1; i >= 0; i-- { mi[i] = min(nums[i], mi[i+1]) } mx := 0 for i := 1; i <= n; i++ { v := nums[i-1] mx = max(mx, v) if mx <= mi[i] { return i } } return 0 }