Welcome to Subscribe On Youtube

903. Valid Permutations for DI Sequence

Description

You are given a string s of length n where s[i] is either:

  • 'D' means decreasing, or
  • 'I' means increasing.

A permutation perm of n + 1 integers of all the integers in the range [0, n] is called a valid permutation if for all valid i:

  • If s[i] == 'D', then perm[i] > perm[i + 1], and
  • If s[i] == 'I', then perm[i] < perm[i + 1].

Return the number of valid permutations perm. Since the answer may be large, return it modulo 109 + 7.

 

Example 1:

Input: s = "DID"
Output: 5
Explanation: The 5 valid permutations of (0, 1, 2, 3) are:
(1, 0, 3, 2)
(2, 0, 3, 1)
(2, 1, 3, 0)
(3, 0, 2, 1)
(3, 1, 2, 0)

Example 2:

Input: s = "D"
Output: 1

 

Constraints:

  • n == s.length
  • 1 <= n <= 200
  • s[i] is either 'I' or 'D'.

Solutions

Solution 1: Dynamic Programming

We define $f[i][j]$ as the number of permutations that satisfy the problem’s requirements with the first $i$ characters of the string ending with the number $j$. Initially, $f[0][0]=1$, and the rest $f[0][j]=0$. The answer is $\sum_{j=0}^n f[n][j]$.

Consider $f[i][j]$, where $j \in [0, i]$.

If the $i$th character $s[i-1]$ is 'D', then $f[i][j]$ can be transferred from $f[i-1][k]$, where $k \in [j+1, i]$. Since $k-1$ can only be up to $i-1$, we move $k$ one place to the left, so $k \in [j, i-1]$. Therefore, we have $f[i][j] = \sum_{k=j}^{i-1} f[i-1][k]$.

If the $i$th character $s[i-1]$ is 'I', then $f[i][j]$ can be transferred from $f[i-1][k]$, where $k \in [0, j-1]$. Therefore, we have $f[i][j] = \sum_{k=0}^{j-1} f[i-1][k]$.

The final answer is $\sum_{j=0}^n f[n][j]$.

The time complexity is $O(n^3)$, and the space complexity is $O(n^2)$. Here, $n$ is the length of the string.

We can optimize the time complexity to $O(n^2)$ using prefix sums. Additionally, we can optimize the space complexity to $O(n)$ using a rolling array.

  • class Solution {
        public int numPermsDISequence(String s) {
            final int mod = (int) 1e9 + 7;
            int n = s.length();
            int[] f = new int[n + 1];
            f[0] = 1;
            for (int i = 1; i <= n; ++i) {
                int pre = 0;
                int[] g = new int[n + 1];
                if (s.charAt(i - 1) == 'D') {
                    for (int j = i; j >= 0; --j) {
                        pre = (pre + f[j]) % mod;
                        g[j] = pre;
                    }
                } else {
                    for (int j = 0; j <= i; ++j) {
                        g[j] = pre;
                        pre = (pre + f[j]) % mod;
                    }
                }
                f = g;
            }
            int ans = 0;
            for (int j = 0; j <= n; ++j) {
                ans = (ans + f[j]) % mod;
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int numPermsDISequence(string s) {
            const int mod = 1e9 + 7;
            int n = s.size();
            vector<int> f(n + 1);
            f[0] = 1;
            for (int i = 1; i <= n; ++i) {
                int pre = 0;
                vector<int> g(n + 1);
                if (s[i - 1] == 'D') {
                    for (int j = i; j >= 0; --j) {
                        pre = (pre + f[j]) % mod;
                        g[j] = pre;
                    }
                } else {
                    for (int j = 0; j <= i; ++j) {
                        g[j] = pre;
                        pre = (pre + f[j]) % mod;
                    }
                }
                f = move(g);
            }
            int ans = 0;
            for (int j = 0; j <= n; ++j) {
                ans = (ans + f[j]) % mod;
            }
            return ans;
        }
    };
    
  • class Solution:
        def numPermsDISequence(self, s: str) -> int:
            mod = 10**9 + 7
            n = len(s)
            f = [1] + [0] * n
            for i, c in enumerate(s, 1):
                pre = 0
                g = [0] * (n + 1)
                if c == "D":
                    for j in range(i, -1, -1):
                        pre = (pre + f[j]) % mod
                        g[j] = pre
                else:
                    for j in range(i + 1):
                        g[j] = pre
                        pre = (pre + f[j]) % mod
                f = g
            return sum(f) % mod
    
    
  • func numPermsDISequence(s string) (ans int) {
    	const mod = 1e9 + 7
    	n := len(s)
    	f := make([]int, n+1)
    	f[0] = 1
    	for i := 1; i <= n; i++ {
    		pre := 0
    		g := make([]int, n+1)
    		if s[i-1] == 'D' {
    			for j := i; j >= 0; j-- {
    				pre = (pre + f[j]) % mod
    				g[j] = pre
    			}
    		} else {
    			for j := 0; j <= i; j++ {
    				g[j] = pre
    				pre = (pre + f[j]) % mod
    			}
    		}
    		f = g
    	}
    	for j := 0; j <= n; j++ {
    		ans = (ans + f[j]) % mod
    	}
    	return
    }
    
  • function numPermsDISequence(s: string): number {
        const n = s.length;
        let f: number[] = Array(n + 1).fill(0);
        f[0] = 1;
        const mod = 10 ** 9 + 7;
        for (let i = 1; i <= n; ++i) {
            let pre = 0;
            const g: number[] = Array(n + 1).fill(0);
            if (s[i - 1] === 'D') {
                for (let j = i; j >= 0; --j) {
                    pre = (pre + f[j]) % mod;
                    g[j] = pre;
                }
            } else {
                for (let j = 0; j <= i; ++j) {
                    g[j] = pre;
                    pre = (pre + f[j]) % mod;
                }
            }
            f = g;
        }
        let ans = 0;
        for (let j = 0; j <= n; ++j) {
            ans = (ans + f[j]) % mod;
        }
        return ans;
    }
    
    

All Problems

All Solutions