Welcome to Subscribe On Youtube
902. Numbers At Most N Given Digit Set
Description
Given an array of digits
which is sorted in non-decreasing order. You can write numbers using each digits[i]
as many times as we want. For example, if digits = ['1','3','5']
, we may write numbers such as '13'
, '551'
, and '1351315'
.
Return the number of positive integers that can be generated that are less than or equal to a given integer n
.
Example 1:
Input: digits = ["1","3","5","7"], n = 100 Output: 20 Explanation: The 20 numbers that can be written are: 1, 3, 5, 7, 11, 13, 15, 17, 31, 33, 35, 37, 51, 53, 55, 57, 71, 73, 75, 77.
Example 2:
Input: digits = ["1","4","9"], n = 1000000000 Output: 29523 Explanation: We can write 3 one digit numbers, 9 two digit numbers, 27 three digit numbers, 81 four digit numbers, 243 five digit numbers, 729 six digit numbers, 2187 seven digit numbers, 6561 eight digit numbers, and 19683 nine digit numbers. In total, this is 29523 integers that can be written using the digits array.
Example 3:
Input: digits = ["7"], n = 8 Output: 1
Constraints:
1 <= digits.length <= 9
digits[i].length == 1
digits[i]
is a digit from'1'
to'9'
.- All the values in
digits
are unique. digits
is sorted in non-decreasing order.1 <= n <= 109
Solutions
-
class Solution { private int[] a = new int[12]; private int[][] dp = new int[12][2]; private Set<Integer> s = new HashSet<>(); public int atMostNGivenDigitSet(String[] digits, int n) { for (var e : dp) { Arrays.fill(e, -1); } for (String d : digits) { s.add(Integer.parseInt(d)); } int len = 0; while (n > 0) { a[++len] = n % 10; n /= 10; } return dfs(len, 1, true); } private int dfs(int pos, int lead, boolean limit) { if (pos <= 0) { return lead ^ 1; } if (!limit && lead != 1 && dp[pos][lead] != -1) { return dp[pos][lead]; } int ans = 0; int up = limit ? a[pos] : 9; for (int i = 0; i <= up; ++i) { if (i == 0 && lead == 1) { ans += dfs(pos - 1, lead, limit && i == up); } else if (s.contains(i)) { ans += dfs(pos - 1, 0, limit && i == up); } } if (!limit && lead == 0) { dp[pos][lead] = ans; } return ans; } }
-
class Solution { public: int a[12]; int dp[12][2]; unordered_set<int> s; int atMostNGivenDigitSet(vector<string>& digits, int n) { memset(dp, -1, sizeof dp); for (auto& d : digits) { s.insert(stoi(d)); } int len = 0; while (n) { a[++len] = n % 10; n /= 10; } return dfs(len, 1, true); } int dfs(int pos, int lead, bool limit) { if (pos <= 0) { return lead ^ 1; } if (!limit && !lead && dp[pos][lead] != -1) { return dp[pos][lead]; } int ans = 0; int up = limit ? a[pos] : 9; for (int i = 0; i <= up; ++i) { if (i == 0 && lead) { ans += dfs(pos - 1, lead, limit && i == up); } else if (s.count(i)) { ans += dfs(pos - 1, 0, limit && i == up); } } if (!limit && !lead) { dp[pos][lead] = ans; } return ans; } };
-
class Solution: def atMostNGivenDigitSet(self, digits: List[str], n: int) -> int: @cache def dfs(pos, lead, limit): if pos <= 0: return lead == False up = a[pos] if limit else 9 ans = 0 for i in range(up + 1): if i == 0 and lead: ans += dfs(pos - 1, lead, limit and i == up) elif i in s: ans += dfs(pos - 1, False, limit and i == up) return ans l = 0 a = [0] * 12 s = {int(d) for d in digits} while n: l += 1 a[l] = n % 10 n //= 10 return dfs(l, True, True)
-
func atMostNGivenDigitSet(digits []string, n int) int { s := map[int]bool{} for _, d := range digits { i, _ := strconv.Atoi(d) s[i] = true } a := make([]int, 12) dp := make([][2]int, 12) for i := range a { dp[i] = [2]int{-1, -1} } l := 0 for n > 0 { l++ a[l] = n % 10 n /= 10 } var dfs func(int, int, bool) int dfs = func(pos, lead int, limit bool) int { if pos <= 0 { return lead ^ 1 } if !limit && lead == 0 && dp[pos][lead] != -1 { return dp[pos][lead] } up := 9 if limit { up = a[pos] } ans := 0 for i := 0; i <= up; i++ { if i == 0 && lead == 1 { ans += dfs(pos-1, lead, limit && i == up) } else if s[i] { ans += dfs(pos-1, 0, limit && i == up) } } if !limit { dp[pos][lead] = ans } return ans } return dfs(l, 1, true) }