Welcome to Subscribe On Youtube

883. Projection Area of 3D Shapes

Description

You are given an n x n grid where we place some 1 x 1 x 1 cubes that are axis-aligned with the x, y, and z axes.

Each value v = grid[i][j] represents a tower of v cubes placed on top of the cell (i, j).

We view the projection of these cubes onto the xy, yz, and zx planes.

A projection is like a shadow, that maps our 3-dimensional figure to a 2-dimensional plane. We are viewing the "shadow" when looking at the cubes from the top, the front, and the side.

Return the total area of all three projections.

 

Example 1:

Input: grid = [[1,2],[3,4]]
Output: 17
Explanation: Here are the three projections ("shadows") of the shape made with each axis-aligned plane.

Example 2:

Input: grid = [[2]]
Output: 5

Example 3:

Input: grid = [[1,0],[0,2]]
Output: 8

 

Constraints:

  • n == grid.length == grid[i].length
  • 1 <= n <= 50
  • 0 <= grid[i][j] <= 50

Solutions

  • class Solution {
        public int projectionArea(int[][] grid) {
            int xy = 0, yz = 0, zx = 0;
            for (int i = 0, n = grid.length; i < n; ++i) {
                int maxYz = 0;
                int maxZx = 0;
                for (int j = 0; j < n; ++j) {
                    if (grid[i][j] > 0) {
                        ++xy;
                    }
                    maxYz = Math.max(maxYz, grid[i][j]);
                    maxZx = Math.max(maxZx, grid[j][i]);
                }
                yz += maxYz;
                zx += maxZx;
            }
            return xy + yz + zx;
        }
    }
    
  • class Solution {
    public:
        int projectionArea(vector<vector<int>>& grid) {
            int xy = 0, yz = 0, zx = 0;
            for (int i = 0, n = grid.size(); i < n; ++i) {
                int maxYz = 0, maxZx = 0;
                for (int j = 0; j < n; ++j) {
                    xy += grid[i][j] > 0;
                    maxYz = max(maxYz, grid[i][j]);
                    maxZx = max(maxZx, grid[j][i]);
                }
                yz += maxYz;
                zx += maxZx;
            }
            return xy + yz + zx;
        }
    };
    
  • class Solution:
        def projectionArea(self, grid: List[List[int]]) -> int:
            xy = sum(v > 0 for row in grid for v in row)
            yz = sum(max(row) for row in grid)
            zx = sum(max(col) for col in zip(*grid))
            return xy + yz + zx
    
    
  • func projectionArea(grid [][]int) int {
    	xy, yz, zx := 0, 0, 0
    	for i, row := range grid {
    		maxYz, maxZx := 0, 0
    		for j, v := range row {
    			if v > 0 {
    				xy++
    			}
    			maxYz = max(maxYz, v)
    			maxZx = max(maxZx, grid[j][i])
    		}
    		yz += maxYz
    		zx += maxZx
    	}
    	return xy + yz + zx
    }
    
  • function projectionArea(grid: number[][]): number {
        const n = grid.length;
        let res = grid.reduce((r, v) => r + v.reduce((r, v) => r + (v === 0 ? 0 : 1), 0), 0);
        for (let i = 0; i < n; i++) {
            let xMax = 0;
            let yMax = 0;
            for (let j = 0; j < n; j++) {
                xMax = Math.max(xMax, grid[i][j]);
                yMax = Math.max(yMax, grid[j][i]);
            }
            res += xMax + yMax;
        }
        return res;
    }
    
    
  • impl Solution {
        pub fn projection_area(grid: Vec<Vec<i32>>) -> i32 {
            let n = grid.len();
            let mut res = 0;
            let mut x_max = vec![0; n];
            let mut y_max = vec![0; n];
            for i in 0..n {
                for j in 0..n {
                    let val = grid[i][j];
                    if val == 0 {
                        continue;
                    }
                    res += 1;
                    x_max[i] = x_max[i].max(val);
                    y_max[j] = y_max[j].max(val);
                }
            }
            res + y_max.iter().sum::<i32>() + x_max.iter().sum::<i32>()
        }
    }
    
    

All Problems

All Solutions