Welcome to Subscribe On Youtube
883. Projection Area of 3D Shapes
Description
You are given an n x n
grid
where we place some 1 x 1 x 1
cubes that are axis-aligned with the x
, y
, and z
axes.
Each value v = grid[i][j]
represents a tower of v
cubes placed on top of the cell (i, j)
.
We view the projection of these cubes onto the xy
, yz
, and zx
planes.
A projection is like a shadow, that maps our 3-dimensional figure to a 2-dimensional plane. We are viewing the "shadow" when looking at the cubes from the top, the front, and the side.
Return the total area of all three projections.
Example 1:
Input: grid = [[1,2],[3,4]] Output: 17 Explanation: Here are the three projections ("shadows") of the shape made with each axis-aligned plane.
Example 2:
Input: grid = [[2]] Output: 5
Example 3:
Input: grid = [[1,0],[0,2]] Output: 8
Constraints:
n == grid.length == grid[i].length
1 <= n <= 50
0 <= grid[i][j] <= 50
Solutions
-
class Solution { public int projectionArea(int[][] grid) { int xy = 0, yz = 0, zx = 0; for (int i = 0, n = grid.length; i < n; ++i) { int maxYz = 0; int maxZx = 0; for (int j = 0; j < n; ++j) { if (grid[i][j] > 0) { ++xy; } maxYz = Math.max(maxYz, grid[i][j]); maxZx = Math.max(maxZx, grid[j][i]); } yz += maxYz; zx += maxZx; } return xy + yz + zx; } }
-
class Solution { public: int projectionArea(vector<vector<int>>& grid) { int xy = 0, yz = 0, zx = 0; for (int i = 0, n = grid.size(); i < n; ++i) { int maxYz = 0, maxZx = 0; for (int j = 0; j < n; ++j) { xy += grid[i][j] > 0; maxYz = max(maxYz, grid[i][j]); maxZx = max(maxZx, grid[j][i]); } yz += maxYz; zx += maxZx; } return xy + yz + zx; } };
-
class Solution: def projectionArea(self, grid: List[List[int]]) -> int: xy = sum(v > 0 for row in grid for v in row) yz = sum(max(row) for row in grid) zx = sum(max(col) for col in zip(*grid)) return xy + yz + zx
-
func projectionArea(grid [][]int) int { xy, yz, zx := 0, 0, 0 for i, row := range grid { maxYz, maxZx := 0, 0 for j, v := range row { if v > 0 { xy++ } maxYz = max(maxYz, v) maxZx = max(maxZx, grid[j][i]) } yz += maxYz zx += maxZx } return xy + yz + zx }
-
function projectionArea(grid: number[][]): number { const n = grid.length; let res = grid.reduce((r, v) => r + v.reduce((r, v) => r + (v === 0 ? 0 : 1), 0), 0); for (let i = 0; i < n; i++) { let xMax = 0; let yMax = 0; for (let j = 0; j < n; j++) { xMax = Math.max(xMax, grid[i][j]); yMax = Math.max(yMax, grid[j][i]); } res += xMax + yMax; } return res; }
-
impl Solution { pub fn projection_area(grid: Vec<Vec<i32>>) -> i32 { let n = grid.len(); let mut res = 0; let mut x_max = vec![0; n]; let mut y_max = vec![0; n]; for i in 0..n { for j in 0..n { let val = grid[i][j]; if val == 0 { continue; } res += 1; x_max[i] = x_max[i].max(val); y_max[j] = y_max[j].max(val); } } res + y_max.iter().sum::<i32>() + x_max.iter().sum::<i32>() } }