Formatted question description: https://leetcode.ca/all/882.html
882. Reachable Nodes In Subdivided Graph (Hard)
Starting with an undirected graph (the "original graph") with nodes from 0
to N-1
, subdivisions are made to some of the edges.
The graph is given as follows: edges[k]
is a list of integer pairs (i, j, n)
such that (i, j)
is an edge of the original graph,
and n
is the total number of new nodes on that edge.
Then, the edge (i, j)
is deleted from the original graph, n
new nodes (x_1, x_2, ..., x_n)
are added to the original graph,
and n+1
new edges (i, x_1), (x_1, x_2), (x_2, x_3), ..., (x_{n-1}, x_n), (x_n, j)
are added to the original graph.
Now, you start at node 0
from the original graph, and in each move, you travel along one edge.
Return how many nodes you can reach in at most M
moves.
Example 1:
Input:edges
= [[0,1,10],[0,2,1],[1,2,2]], M = 6, N = 3 Output: 13 Explanation: The nodes that are reachable in the final graph after M = 6 moves are indicated below.![]()
Example 2:
Input: edges
= [[0,1,4],[1,2,6],[0,2,8],[1,3,1]], M = 10, N = 4
Output: 23
Note:
0 <= edges.length <= 10000
0 <= edges[i][0] < edges[i][1] < N
- There does not exist any
i != j
for whichedges[i][0] == edges[j][0]
andedges[i][1] == edges[j][1]
. - The original graph has no parallel edges.
0 <= edges[i][2] <= 10000
0 <= M <= 10^9
1 <= N <= 3000
- A reachable node is a node that can be travelled to using at most M moves starting from node 0.
Related Topics:
Heap
Solution 1. Dijkstra
// OJ: https://leetcode.com/problems/reachable-nodes-in-subdivided-graph/
// Time: O(ElogN)
// Space: O(N)
// Ref: https://leetcode.com/problems/reachable-nodes-in-subdivided-graph/solution/
class Solution {
typedef pair<int, int> pii;
public:
int reachableNodes(vector<vector<int>>& edges, int M, int N) {
vector<vector<pii>> G(N);
for (auto &e : edges) {
int u = e[0], v = e[1], w = e[2];
G[u].emplace_back(v, w);
G[v].emplace_back(u, w);
}
map<int, int> dist;
dist[0] = 0;
for (int i = 1; i < N; ++i) dist[i] = M + 1; // M is the maximum steps we can take, so M + 1 is the smallest invalid value.
map<pii, int> used;
int ans = 0;
priority_queue<pii, vector<pii>, greater<pii>> q; // weight, node
q.emplace(0, 0);
while (q.size()) {
auto top = q.top();
q.pop();
int d = top.first, u = top.second;
if (d > dist[u]) continue;
++ans;
for (auto [v, w] : G[u]) {
used[{ u, v }] = min(w, M - d); // M - d is how much further we can walk from this `u` node
int d2 = d + w + 1; // d2 is the minimal distance from source node to this `v` node.
if (d2 < min(dist[v], M + 1)) {
q.emplace(d2, v);
dist[v] = d2;
}
}
}
for (auto &e : edges) {
int u = e[0], v = e[1], w = e[2];
ans += min(w, used[{ u, v }] + used[{ v, u }]);
}
return ans;
}
};
Java
-
class Solution { public int reachableNodes(int[][] edges, int M, int N) { Map<Integer, Map<Integer, Integer>> graphMap = new HashMap<Integer, Map<Integer, Integer>>(); for (int[] edge : edges) { int node0 = edge[0], node1 = edge[1], insertions = edge[2]; Map<Integer, Integer> map0 = graphMap.getOrDefault(node0, new HashMap<Integer, Integer>()); Map<Integer, Integer> map1 = graphMap.getOrDefault(node1, new HashMap<Integer, Integer>()); map0.put(node1, insertions); map1.put(node0, insertions); graphMap.put(node0, map0); graphMap.put(node1, map1); } int[] distances = new int[N]; Arrays.fill(distances, M + 1); distances[0] = 0; int[][] used = new int[N][N]; int reachable = 0; PriorityQueue<int[]> priorityQueue = new PriorityQueue<int[]>(new Comparator<int[]>() { public int compare(int[] nodeDistance1, int[] nodeDistance2) { return nodeDistance1[1] - nodeDistance2[1]; } }); priorityQueue.offer(new int[]{0, 0}); while (!priorityQueue.isEmpty()) { int[] nodeDistance = priorityQueue.poll(); int node = nodeDistance[0], distance = nodeDistance[1]; if (distance > distances[node]) continue; reachable++; if (graphMap.containsKey(node)) { Map<Integer, Integer> edgesMap = graphMap.get(node); Set<Integer> keySet = edgesMap.keySet(); for (int adjacent : keySet) { int insertions = edgesMap.get(adjacent); int currReachable = Math.min(insertions, M - distance); used[node][adjacent] = currReachable; int newDistance = distance + insertions + 1; if (newDistance < distances[adjacent]) { distances[adjacent] = newDistance; priorityQueue.offer(new int[]{adjacent, newDistance}); } } } } for (int[] edge : edges) { int node0 = edge[0], node1 = edge[1], insertions = edge[2]; reachable += Math.min(insertions, used[node0][node1] + used[node1][node0]); } return reachable; } }
-
// OJ: https://leetcode.com/problems/reachable-nodes-in-subdivided-graph/ // Time: O(ElogE) // Space: O(E) // Ref: https://leetcode.com/problems/reachable-nodes-in-subdivided-graph/solution/ class Solution { public: int reachableNodes(vector<vector<int>>& E, int maxMoves, int n) { vector<vector<pair<int, int>>> G(n); for (auto &e : E) { int u = e[0], v = e[1], w = e[2]; G[u].emplace_back(v, w); G[v].emplace_back(u, w); } vector<int> step(n, -1); step[0] = maxMoves; priority_queue<pair<int, int>> pq; // Max heap. Each entry is (stepsLeft, nodeIndex) pq.emplace(maxMoves, 0); int ans = 0; while (pq.size()) { auto [stepsLeft, u] = pq.top(); pq.pop(); if (stepsLeft < step[u]) continue; ++ans; if (stepsLeft == 0) continue; for (auto &[v, w] : G[u]) { if (step[v] < stepsLeft - w - 1) { step[v] = stepsLeft - w - 1; pq.emplace(step[v], v); } } } for (auto &e : E) ans += min(e[2], max(0, step[e[0]]) + max(0, step[e[1]])); return ans; } };
-
print("Todo!")