Welcome to Subscribe On Youtube

865. Smallest Subtree with all the Deepest Nodes

Description

Given the root of a binary tree, the depth of each node is the shortest distance to the root.

Return the smallest subtree such that it contains all the deepest nodes in the original tree.

A node is called the deepest if it has the largest depth possible among any node in the entire tree.

The subtree of a node is a tree consisting of that node, plus the set of all descendants of that node.

 

Example 1:

Input: root = [3,5,1,6,2,0,8,null,null,7,4]
Output: [2,7,4]
Explanation: We return the node with value 2, colored in yellow in the diagram.
The nodes coloured in blue are the deepest nodes of the tree.
Notice that nodes 5, 3 and 2 contain the deepest nodes in the tree but node 2 is the smallest subtree among them, so we return it.

Example 2:

Input: root = [1]
Output: [1]
Explanation: The root is the deepest node in the tree.

Example 3:

Input: root = [0,1,3,null,2]
Output: [2]
Explanation: The deepest node in the tree is 2, the valid subtrees are the subtrees of nodes 2, 1 and 0 but the subtree of node 2 is the smallest.

 

Constraints:

  • The number of nodes in the tree will be in the range [1, 500].
  • 0 <= Node.val <= 500
  • The values of the nodes in the tree are unique.

 

Note: This question is the same as 1123: https://leetcode.com/problems/lowest-common-ancestor-of-deepest-leaves/

Solutions

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public TreeNode subtreeWithAllDeepest(TreeNode root) {
            return dfs(root).getKey();
        }
    
        private Pair<TreeNode, Integer> dfs(TreeNode root) {
            if (root == null) {
                return new Pair<>(null, 0);
            }
            Pair<TreeNode, Integer> l = dfs(root.left);
            Pair<TreeNode, Integer> r = dfs(root.right);
            int d1 = l.getValue(), d2 = r.getValue();
            if (d1 > d2) {
                return new Pair<>(l.getKey(), d1 + 1);
            }
            if (d1 < d2) {
                return new Pair<>(r.getKey(), d2 + 1);
            }
            return new Pair<>(root, d1 + 1);
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    using pti = pair<TreeNode*, int>;
    class Solution {
    public:
        TreeNode* subtreeWithAllDeepest(TreeNode* root) {
            return dfs(root).first;
        }
    
        pti dfs(TreeNode* root) {
            if (!root) return {nullptr, 0};
            pti l = dfs(root->left);
            pti r = dfs(root->right);
            int d1 = l.second, d2 = r.second;
            if (d1 > d2) return {l.first, d1 + 1};
            if (d1 < d2) return {r.first, d2 + 1};
            return {root, d1 + 1};
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def subtreeWithAllDeepest(self, root: TreeNode) -> TreeNode:
            def dfs(root):
                if root is None:
                    return None, 0
                l, d1 = dfs(root.left)
                r, d2 = dfs(root.right)
                if d1 > d2:
                    return l, d1 + 1
                if d1 < d2:
                    return r, d2 + 1
                return root, d1 + 1
    
            return dfs(root)[0]
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    type pair struct {
    	first  *TreeNode
    	second int
    }
    
    func subtreeWithAllDeepest(root *TreeNode) *TreeNode {
    	var dfs func(root *TreeNode) pair
    	dfs = func(root *TreeNode) pair {
    		if root == nil {
    			return pair{nil, 0}
    		}
    		l, r := dfs(root.Left), dfs(root.Right)
    		d1, d2 := l.second, r.second
    		if d1 > d2 {
    			return pair{l.first, d1 + 1}
    		}
    		if d1 < d2 {
    			return pair{r.first, d2 + 1}
    		}
    		return pair{root, d1 + 1}
    	}
    	return dfs(root).first
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function subtreeWithAllDeepest(root: TreeNode | null): TreeNode | null {
        const dfs = (root: TreeNode | null): [TreeNode, number] => {
            if (!root) {
                return [null, 0];
            }
            const [l, ld] = dfs(root.left);
            const [r, rd] = dfs(root.right);
            if (ld > rd) {
                return [l, ld + 1];
            }
            if (ld < rd) {
                return [r, rd + 1];
            }
            return [root, ld + 1];
        };
        return dfs(root)[0];
    }
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::cell::RefCell;
    use std::rc::Rc;
    impl Solution {
        pub fn subtree_with_all_deepest(
            root: Option<Rc<RefCell<TreeNode>>>,
        ) -> Option<Rc<RefCell<TreeNode>>> {
            fn dfs(
                root: Option<Rc<RefCell<TreeNode>>>,
            ) -> (Option<Rc<RefCell<TreeNode>>>, i32) {
                if let Some(node) = root {
                    let left = node.borrow().left.clone();
                    let right = node.borrow().right.clone();
    
                    let (l, ld) = dfs(left);
                    let (r, rd) = dfs(right);
    
                    if ld > rd {
                        (l, ld + 1)
                    } else if ld < rd {
                        (r, rd + 1)
                    } else {
                        (Some(node), ld + 1)
                    }
                } else {
                    (None, 0)
                }
            }
    
            dfs(root).0
        }
    }
    
    

All Problems

All Solutions