Welcome to Subscribe On Youtube
862. Shortest Subarray with Sum at Least K
Description
Given an integer array nums
and an integer k
, return the length of the shortest non-empty subarray of nums
with a sum of at least k
. If there is no such subarray, return -1
.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [1], k = 1 Output: 1
Example 2:
Input: nums = [1,2], k = 4 Output: -1
Example 3:
Input: nums = [2,-1,2], k = 3 Output: 3
Constraints:
1 <= nums.length <= 105
-105 <= nums[i] <= 105
1 <= k <= 109
Solutions
-
class Solution { public int shortestSubarray(int[] nums, int k) { int n = nums.length; long[] s = new long[n + 1]; for (int i = 0; i < n; ++i) { s[i + 1] = s[i] + nums[i]; } Deque<Integer> q = new ArrayDeque<>(); int ans = n + 1; for (int i = 0; i <= n; ++i) { while (!q.isEmpty() && s[i] - s[q.peek()] >= k) { ans = Math.min(ans, i - q.poll()); } while (!q.isEmpty() && s[q.peekLast()] >= s[i]) { q.pollLast(); } q.offer(i); } return ans > n ? -1 : ans; } }
-
class Solution { public: int shortestSubarray(vector<int>& nums, int k) { int n = nums.size(); vector<long> s(n + 1); for (int i = 0; i < n; ++i) s[i + 1] = s[i] + nums[i]; deque<int> q; int ans = n + 1; for (int i = 0; i <= n; ++i) { while (!q.empty() && s[i] - s[q.front()] >= k) { ans = min(ans, i - q.front()); q.pop_front(); } while (!q.empty() && s[q.back()] >= s[i]) q.pop_back(); q.push_back(i); } return ans > n ? -1 : ans; } };
-
class Solution: def shortestSubarray(self, nums: List[int], k: int) -> int: s = list(accumulate(nums, initial=0)) q = deque() ans = inf for i, v in enumerate(s): while q and v - s[q[0]] >= k: ans = min(ans, i - q.popleft()) while q and s[q[-1]] >= v: q.pop() q.append(i) return -1 if ans == inf else ans
-
func shortestSubarray(nums []int, k int) int { n := len(nums) s := make([]int, n+1) for i, x := range nums { s[i+1] = s[i] + x } q := []int{} ans := n + 1 for i, v := range s { for len(q) > 0 && v-s[q[0]] >= k { ans = min(ans, i-q[0]) q = q[1:] } for len(q) > 0 && s[q[len(q)-1]] >= v { q = q[:len(q)-1] } q = append(q, i) } if ans > n { return -1 } return ans }