Welcome to Subscribe On Youtube
855. Exam Room
Description
There is an exam room with n
seats in a single row labeled from 0
to n - 1
.
When a student enters the room, they must sit in the seat that maximizes the distance to the closest person. If there are multiple such seats, they sit in the seat with the lowest number. If no one is in the room, then the student sits at seat number 0
.
Design a class that simulates the mentioned exam room.
Implement the ExamRoom
class:
ExamRoom(int n)
Initializes the object of the exam room with the number of the seatsn
.int seat()
Returns the label of the seat at which the next student will set.void leave(int p)
Indicates that the student sitting at seatp
will leave the room. It is guaranteed that there will be a student sitting at seatp
.
Example 1:
Input ["ExamRoom", "seat", "seat", "seat", "seat", "leave", "seat"] [[10], [], [], [], [], [4], []] Output [null, 0, 9, 4, 2, null, 5] Explanation ExamRoom examRoom = new ExamRoom(10); examRoom.seat(); // return 0, no one is in the room, then the student sits at seat number 0. examRoom.seat(); // return 9, the student sits at the last seat number 9. examRoom.seat(); // return 4, the student sits at the last seat number 4. examRoom.seat(); // return 2, the student sits at the last seat number 2. examRoom.leave(4); examRoom.seat(); // return 5, the student sits at the last seat number 5.
Constraints:
1 <= n <= 109
- It is guaranteed that there is a student sitting at seat
p
. - At most
104
calls will be made toseat
andleave
.
Solutions
-
class ExamRoom { private TreeSet<int[]> ts = new TreeSet<>((a, b) -> { int d1 = dist(a), d2 = dist(b); return d1 == d2 ? a[0] - b[0] : d2 - d1; }); private Map<Integer, Integer> left = new HashMap<>(); private Map<Integer, Integer> right = new HashMap<>(); private int n; public ExamRoom(int n) { this.n = n; add(new int[] {-1, n}); } public int seat() { int[] s = ts.first(); int p = (s[0] + s[1]) >> 1; if (s[0] == -1) { p = 0; } else if (s[1] == n) { p = n - 1; } del(s); add(new int[] {s[0], p}); add(new int[] {p, s[1]}); return p; } public void leave(int p) { int l = left.get(p), r = right.get(p); del(new int[] {l, p}); del(new int[] {p, r}); add(new int[] {l, r}); } private int dist(int[] s) { int l = s[0], r = s[1]; return l == -1 || r == n ? r - l - 1 : (r - l) >> 1; } private void add(int[] s) { ts.add(s); left.put(s[1], s[0]); right.put(s[0], s[1]); } private void del(int[] s) { ts.remove(s); left.remove(s[1]); right.remove(s[0]); } } /** * Your ExamRoom object will be instantiated and called as such: * ExamRoom obj = new ExamRoom(n); * int param_1 = obj.seat(); * obj.leave(p); */
-
int N; int dist(const pair<int, int>& p) { auto [l, r] = p; if (l == -1 || r == N) return r - l - 1; return (r - l) >> 1; } struct cmp { bool operator()(const pair<int, int>& a, const pair<int, int>& b) const { int d1 = dist(a), d2 = dist(b); return d1 == d2 ? a.first < b.first : d1 > d2; }; }; class ExamRoom { public: ExamRoom(int n) { N = n; this->n = n; add({-1, n}); } int seat() { auto s = *ts.begin(); int p = (s.first + s.second) >> 1; if (s.first == -1) { p = 0; } else if (s.second == n) { p = n - 1; } del(s); add({s.first, p}); add({p, s.second}); return p; } void leave(int p) { int l = left[p], r = right[p]; del({l, p}); del({p, r}); add({l, r}); } private: set<pair<int, int>, cmp> ts; unordered_map<int, int> left; unordered_map<int, int> right; int n; void add(pair<int, int> s) { ts.insert(s); left[s.second] = s.first; right[s.first] = s.second; } void del(pair<int, int> s) { ts.erase(s); left.erase(s.second); right.erase(s.first); } }; /** * Your ExamRoom object will be instantiated and called as such: * ExamRoom* obj = new ExamRoom(n); * int param_1 = obj->seat(); * obj->leave(p); */
-
from sortedcontainers import SortedList class ExamRoom: def __init__(self, n: int): def dist(x): l, r = x return r - l - 1 if l == -1 or r == n else (r - l) >> 1 self.n = n self.ts = SortedList(key=lambda x: (-dist(x), x[0])) self.left = {} self.right = {} self.add((-1, n)) def seat(self) -> int: s = self.ts[0] p = (s[0] + s[1]) >> 1 if s[0] == -1: p = 0 elif s[1] == self.n: p = self.n - 1 self.delete(s) self.add((s[0], p)) self.add((p, s[1])) return p def leave(self, p: int) -> None: l, r = self.left[p], self.right[p] self.delete((l, p)) self.delete((p, r)) self.add((l, r)) def add(self, s): self.ts.add(s) self.left[s[1]] = s[0] self.right[s[0]] = s[1] def delete(self, s): self.ts.remove(s) self.left.pop(s[1]) self.right.pop(s[0]) # Your ExamRoom object will be instantiated and called as such: # obj = ExamRoom(n) # param_1 = obj.seat() # obj.leave(p)
-
type ExamRoom struct { rbt *redblacktree.Tree left map[int]int right map[int]int n int } func Constructor(n int) ExamRoom { dist := func(s []int) int { if s[0] == -1 || s[1] == n { return s[1] - s[0] - 1 } return (s[1] - s[0]) >> 1 } cmp := func(a, b any) int { x, y := a.([]int), b.([]int) d1, d2 := dist(x), dist(y) if d1 == d2 { return x[0] - y[0] } return d2 - d1 } this := ExamRoom{redblacktree.NewWith(cmp), map[int]int{}, map[int]int{}, n} this.add([]int{-1, n}) return this } func (this *ExamRoom) Seat() int { s := this.rbt.Left().Key.([]int) p := (s[0] + s[1]) >> 1 if s[0] == -1 { p = 0 } else if s[1] == this.n { p = this.n - 1 } this.del(s) this.add([]int{s[0], p}) this.add([]int{p, s[1]}) return p } func (this *ExamRoom) Leave(p int) { l, _ := this.left[p] r, _ := this.right[p] this.del([]int{l, p}) this.del([]int{p, r}) this.add([]int{l, r}) } func (this *ExamRoom) add(s []int) { this.rbt.Put(s, struct{}{}) this.left[s[1]] = s[0] this.right[s[0]] = s[1] } func (this *ExamRoom) del(s []int) { this.rbt.Remove(s) delete(this.left, s[1]) delete(this.right, s[0]) } /** * Your ExamRoom object will be instantiated and called as such: * obj := Constructor(n); * param_1 := obj.Seat(); * obj.Leave(p); */