Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/823.html
823. Binary Trees With Factors (Medium)
Given an array of unique integers, each integer is strictly greater than 1.
We make a binary tree using these integers and each number may be used for any number of times.
Each non-leaf node's value should be equal to the product of the values of it's children.
How many binary trees can we make? Return the answer modulo 10 ** 9 + 7.
Example 1:
Input:A = [2, 4]
Output: 3 Explanation: We can make these trees:[2], [4], [4, 2, 2]
Example 2:
Input:A = [2, 4, 5, 10]
Output:7
Explanation: We can make these trees:[2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2]
.
Note:
1 <= A.length <= 1000
.2 <= A[i] <= 10 ^ 9
.
Solution 1. DP
// OJ: https://leetcode.com/problems/binary-trees-with-factors/
// Time: O(N^2)
// Space: O(N)
class Solution {
public:
int numFactoredBinaryTrees(vector<int>& A) {
int mod = 1e9 + 7, N = A.size();
sort(A.begin(), A.end());
vector<long long> dp(N, 1);
unordered_map<int, long long> m;
for (int i = 0; i < N; ++i) m[A[i]] = i;
for (int i = 0; i < N; ++i) {
for (int j = 0; j < i; ++j) {
if (A[i] % A[j] || m.find(A[i] / A[j]) == m.end()) continue;
dp[i] = (dp[i] + dp[j] * dp[m[A[i] / A[j]]]) % mod;
}
}
int ans = 0;
for (auto n : dp) ans = (ans + n) % mod;
return ans;
}
};
-
class Solution { public int numFactoredBinaryTrees(int[] A) { final int MODULO = 1000000007; Arrays.sort(A); int length = A.length; long[] counts = new long[length]; Arrays.fill(counts, 1); Map<Integer, Integer> indexMap = new HashMap<Integer, Integer>(); for (int i = 0; i < length; i++) indexMap.put(A[i], i); for (int i = 1; i < length; i++) { for (int j = 0; j < i; j++) { if (A[i] % A[j] == 0) { int leftChild = A[j]; int rightChild = A[i] / A[j]; if (indexMap.containsKey(rightChild)) { int rightIndex = indexMap.get(rightChild); counts[i] = (counts[i] + counts[j] * counts[rightIndex]) % MODULO; } } } } long trees = 0; for (int i = 0; i < length; i++) trees = (trees + counts[i]) % MODULO; return (int) trees; } }
-
// OJ: https://leetcode.com/problems/binary-trees-with-factors/ // Time: O(N^2) // Space: O(N) class Solution { public: int numFactoredBinaryTrees(vector<int>& A) { int mod = 1e9 + 7, N = A.size(); sort(A.begin(), A.end()); vector<long long> dp(N, 1); unordered_map<int, long long> m; for (int i = 0; i < N; ++i) m[A[i]] = i; for (int i = 0; i < N; ++i) { for (int j = 0; j < i; ++j) { if (A[i] % A[j] || m.find(A[i] / A[j]) == m.end()) continue; dp[i] = (dp[i] + dp[j] * dp[m[A[i] / A[j]]]) % mod; } } int ans = 0; for (auto n : dp) ans = (ans + n) % mod; return ans; } };
-
class Solution: def numFactoredBinaryTrees(self, arr: List[int]) -> int: mod = 10**9 + 7 n = len(arr) arr.sort() idx = {v: i for i, v in enumerate(arr)} f = [1] * n for i, a in enumerate(arr): for j in range(i): b = arr[j] if a % b == 0 and (c := (a // b)) in idx: f[i] = (f[i] + f[j] * f[idx[c]]) % mod return sum(f) % mod ############ class Solution(object): def numFactoredBinaryTrees(self, A): """ :type A: List[int] :rtype: int """ A.sort() dp = {} for i, a in enumerate(A): dp[a] = 1 for j in range(i): if a % A[j] == 0 and a / A[j] in dp: dp[a] += dp[A[j]] * dp[a / A[j]] return sum(dp.values()) % (10**9 + 7)
-
func numFactoredBinaryTrees(arr []int) int { const mod int = 1e9 + 7 sort.Ints(arr) f := make([]int, len(arr)) for i := range f { f[i] = 1 } idx := map[int]int{} for i, v := range arr { idx[v] = i } for i, a := range arr { for j := 0; j < i; j++ { b := arr[j] if a%b == 0 { c := a / b if k, ok := idx[c]; ok { f[i] = (f[i] + f[j]*f[k]) % mod } } } } ans := 0 for _, v := range f { ans = (ans + v) % mod } return ans }
-
function numFactoredBinaryTrees(arr: number[]): number { const mod = 10 ** 9 + 7; arr.sort((a, b) => a - b); const idx: Map<number, number> = new Map(); const n = arr.length; for (let i = 0; i < n; ++i) { idx.set(arr[i], i); } const f: number[] = new Array(n).fill(1); for (let i = 0; i < n; ++i) { const a = arr[i]; for (let j = 0; j < i; ++j) { const b = arr[j]; if (a % b === 0) { const c = a / b; if (idx.has(c)) { const k = idx.get(c)!; f[i] = (f[i] + f[j] * f[k]) % mod; } } } } return f.reduce((a, b) => a + b) % mod; }