Welcome to Subscribe On Youtube

785. Is Graph Bipartite

Description

There is an undirected graph with n nodes, where each node is numbered between 0 and n - 1. You are given a 2D array graph, where graph[u] is an array of nodes that node u is adjacent to. More formally, for each v in graph[u], there is an undirected edge between node u and node v. The graph has the following properties:

  • There are no self-edges (graph[u] does not contain u).
  • There are no parallel edges (graph[u] does not contain duplicate values).
  • If v is in graph[u], then u is in graph[v] (the graph is undirected).
  • The graph may not be connected, meaning there may be two nodes u and v such that there is no path between them.

A graph is bipartite if the nodes can be partitioned into two independent sets A and B such that every edge in the graph connects a node in set A and a node in set B.

Return true if and only if it is bipartite.

 

Example 1:

Input: graph = [[1,2,3],[0,2],[0,1,3],[0,2]]
Output: false
Explanation: There is no way to partition the nodes into two independent sets such that every edge connects a node in one and a node in the other.

Example 2:

Input: graph = [[1,3],[0,2],[1,3],[0,2]]
Output: true
Explanation: We can partition the nodes into two sets: {0, 2} and {1, 3}.

 

Constraints:

  • graph.length == n
  • 1 <= n <= 100
  • 0 <= graph[u].length < n
  • 0 <= graph[u][i] <= n - 1
  • graph[u] does not contain u.
  • All the values of graph[u] are unique.
  • If graph[u] contains v, then graph[v] contains u.

Solutions

  • class Solution {
        private int[] color;
        private int[][] g;
    
        public boolean isBipartite(int[][] graph) {
            int n = graph.length;
            color = new int[n];
            g = graph;
            for (int i = 0; i < n; ++i) {
                if (color[i] == 0 && !dfs(i, 1)) {
                    return false;
                }
            }
            return true;
        }
    
        private boolean dfs(int u, int c) {
            color[u] = c;
            for (int v : g[u]) {
                if (color[v] == 0) {
                    if (!dfs(v, 3 - c)) {
                        return false;
                    }
                } else if (color[v] == c) {
                    return false;
                }
            }
            return true;
        }
    }
    
  • class Solution {
    public:
        bool isBipartite(vector<vector<int>>& graph) {
            int n = graph.size();
            vector<int> color(n);
            for (int i = 0; i < n; ++i)
                if (!color[i] && !dfs(i, 1, color, graph))
                    return false;
            return true;
        }
    
        bool dfs(int u, int c, vector<int>& color, vector<vector<int>>& g) {
            color[u] = c;
            for (int& v : g[u]) {
                if (!color[v]) {
                    if (!dfs(v, 3 - c, color, g)) return false;
                } else if (color[v] == c)
                    return false;
            }
            return true;
        }
    };
    
  • class Solution:
        def isBipartite(self, graph: List[List[int]]) -> bool:
            def dfs(u, c):
                color[u] = c
                for v in graph[u]:
                    if not color[v]:
                        if not dfs(v, 3 - c):
                            return False
                    elif color[v] == c:
                        return False
                return True
    
            n = len(graph)
            color = [0] * n
            for i in range(n):
                if not color[i] and not dfs(i, 1):
                    return False
            return True
    
    
  • func isBipartite(graph [][]int) bool {
    	n := len(graph)
    	color := make([]int, n)
    	var dfs func(u, c int) bool
    	dfs = func(u, c int) bool {
    		color[u] = c
    		for _, v := range graph[u] {
    			if color[v] == 0 {
    				if !dfs(v, 3-c) {
    					return false
    				}
    			} else if color[v] == c {
    				return false
    			}
    		}
    		return true
    	}
    	for i := range graph {
    		if color[i] == 0 && !dfs(i, 1) {
    			return false
    		}
    	}
    	return true
    }
    
  • function isBipartite(graph: number[][]): boolean {
        const n = graph.length;
        let valid = true;
        let colors = new Array(n).fill(0);
        function dfs(idx: number, color: number, graph: number[][]) {
            colors[idx] = color;
            const nextColor = 3 - color;
            for (let j of graph[idx]) {
                if (!colors[j]) {
                    dfs(j, nextColor, graph);
                    if (!valid) return;
                } else if (colors[j] != nextColor) {
                    valid = false;
                    return;
                }
            }
        }
    
        for (let i = 0; i < n && valid; i++) {
            if (!colors[i]) {
                dfs(i, 1, graph);
            }
        }
        return valid;
    }
    
    
  • impl Solution {
        #[allow(dead_code)]
        pub fn is_bipartite(graph: Vec<Vec<i32>>) -> bool {
            let mut graph = graph;
            let n = graph.len();
            let mut color_vec: Vec<usize> = vec![0; n];
            for i in 0..n {
                if color_vec[i] == 0 && !Self::traverse(i, 1, &mut color_vec, &mut graph) {
                    return false;
                }
            }
            true
        }
    
        #[allow(dead_code)]
        fn traverse(
            v: usize,
            color: usize,
            color_vec: &mut Vec<usize>,
            graph: &mut Vec<Vec<i32>>
        ) -> bool {
            color_vec[v] = color;
            for n in graph[v].clone() {
                if color_vec[n as usize] == 0 {
                    // This node hasn't been colored
                    if !Self::traverse(n as usize, 3 - color, color_vec, graph) {
                        return false;
                    }
                } else if color_vec[n as usize] == color {
                    // The color is the same
                    return false;
                }
            }
            true
        }
    }
    
    

All Problems

All Solutions