Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/786.html
786. K-th Smallest Prime Fraction
Level
Hard
Description
A sorted list A
contains 1, plus some number of primes. Then, for every p < q in the list, we consider the fraction p/q.
What is the K
-th smallest fraction considered? Return your answer as an array of ints, where answer[0] = p
and answer[1] = q
.
Examples:
Input: A = [1, 2, 3, 5], K = 3
Output: [2, 5]
Explanation:
The fractions to be considered in sorted order are: 1/5, 1/3, 2/5, 1/2, 3/5, 2/3. The third fraction is 2/5.
Input: A = [1, 7], K = 1
Output: [1, 7]
Note:
A
will have length between2
and2000
.- Each
A[i]
will be between1
and30000
. K
will be between1
andA.length * (A.length - 1) / 2
.
Solution
Use a priority queue to store the fractions, where the smallest fraction is polled first. Initially, offer all [A[0], A[i]]
where 0 < i < A.length
to the priority queue. Since A[0]
is 1 and the smallest fraction has a numerator 1, the smallest fraction is in the priority queue.
Then poll the smallest fraction from the priority queue for K - 1
times. To ensure that the remaining smallest fraction is in the priority queue, each time a fraction is polled, try to find the next smallest fraction and offer it to the priority queue if it exists. Suppose the fraction polled is [A[i], A[j]]
where 0 <= i < j < A.length
. If i + 1 < j
, then offer the new fraction [A[i + 1], A[j]]
to the priority queue.
After the K - 1
times, the next element to be polled from the priority queue is the K
-th smallest prime fraction, so return the fraction.
-
class Solution { public int[] kthSmallestPrimeFraction(int[] A, int K) { Map<Integer, Integer> numIndexMap = new HashMap<Integer, Integer>(); int length = A.length; for (int i = 0; i < length; i++) numIndexMap.put(A[i], i); PriorityQueue<int[]> priorityQueue = new PriorityQueue<int[]>(new Comparator<int[]>() { public int compare(int[] fraction1, int[] fraction2) { return fraction1[0] * fraction2[1] - fraction2[0] * fraction1[1]; } }); for (int i = 1; i < length; i++) { int[] fraction = {A[0], A[i]}; priorityQueue.add(fraction); } for (int i = 1; i < K; i++) { int[] fraction = priorityQueue.poll(); int numeratorIndex = numIndexMap.get(fraction[0]), denominatorIndex = numIndexMap.get(fraction[1]); if (numeratorIndex + 1 < denominatorIndex) { numeratorIndex++; int[] newFraction = {A[numeratorIndex], fraction[1]}; priorityQueue.offer(newFraction); } } return priorityQueue.peek(); } }
-
// OJ: https://leetcode.com/problems/k-th-smallest-prime-fraction/ // Time: O(KlogN) // Space: O(N) class Solution { typedef array<int, 2> T; public: vector<int> kthSmallestPrimeFraction(vector<int>& A, int k) { auto cmp = [&](T &a, T &b) { return (double)A[a[0]] / A[a[1]] > (double)A[b[0]] / A[b[1]]; }; priority_queue<T, vector<T>, decltype(cmp)> pq(cmp); for (int i = 0; i < A.size() - 1; ++i) pq.push({ i, (int)A.size() - 1 }); while (--k) { auto [a, b] = pq.top(); pq.pop(); if (a != b - 1) pq.push({ a, b - 1 }); } auto [a, b] = pq.top(); return { A[a], A[b] }; } };
-
class Solution: def kthSmallestPrimeFraction(self, arr: List[int], k: int) -> List[int]: h = [(1 / y, 0, j + 1) for j, y in enumerate(arr[1:])] heapify(h) for _ in range(k - 1): _, i, j = heappop(h) if i + 1 < j: heappush(h, (arr[i + 1] / arr[j], i + 1, j)) return [arr[h[0][1]], arr[h[0][2]]]
-
type frac struct{ x, y, i, j int } type hp []frac func (a hp) Len() int { return len(a) } func (a hp) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a hp) Less(i, j int) bool { return a[i].x*a[j].y < a[j].x*a[i].y } func (a *hp) Push(x interface{}) { *a = append(*a, x.(frac)) } func (a *hp) Pop() interface{} { l := len(*a); tmp := (*a)[l-1]; *a = (*a)[:l-1]; return tmp } func kthSmallestPrimeFraction(arr []int, k int) []int { n := len(arr) h := make(hp, 0, n-1) for i := 1; i < n; i++ { h = append(h, frac{1, arr[i], 0, i}) } heap.Init(&h) for i := 1; i < k; i++ { f := heap.Pop(&h).(frac) if f.i+1 < f.j { heap.Push(&h, frac{arr[f.i+1], arr[f.j], f.i + 1, f.j}) } } return []int{h[0].x, h[0].y} }