Welcome to Subscribe On Youtube

742. Closest Leaf in a Binary Tree

Description

Given the root of a binary tree where every node has a unique value and a target integer k, return the value of the nearest leaf node to the target k in the tree.

Nearest to a leaf means the least number of edges traveled on the binary tree to reach any leaf of the tree. Also, a node is called a leaf if it has no children.

 

Example 1:

Input: root = [1,3,2], k = 1
Output: 2
Explanation: Either 2 or 3 is the nearest leaf node to the target of 1.

Example 2:

Input: root = [1], k = 1
Output: 1
Explanation: The nearest leaf node is the root node itself.

Example 3:

Input: root = [1,2,3,4,null,null,null,5,null,6], k = 2
Output: 3
Explanation: The leaf node with value 3 (and not the leaf node with value 6) is nearest to the node with value 2.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 1000].
  • 1 <= Node.val <= 1000
  • All the values of the tree are unique.
  • There exist some node in the tree where Node.val == k.

Solutions

DFS & BFS.

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        private Map<TreeNode, List<TreeNode>> g;
    
        public int findClosestLeaf(TreeNode root, int k) {
            g = new HashMap<>();
            dfs(root, null);
            Deque<TreeNode> q = new LinkedList<>();
            for (Map.Entry<TreeNode, List<TreeNode>> entry : g.entrySet()) {
                if (entry.getKey() != null && entry.getKey().val == k) {
                    q.offer(entry.getKey());
                    break;
                }
            }
            Set<TreeNode> seen = new HashSet<>();
            while (!q.isEmpty()) {
                TreeNode node = q.poll();
                seen.add(node);
                if (node != null) {
                    if (node.left == null && node.right == null) {
                        return node.val;
                    }
                    for (TreeNode next : g.get(node)) {
                        if (!seen.contains(next)) {
                            q.offer(next);
                        }
                    }
                }
            }
            return 0;
        }
    
        private void dfs(TreeNode root, TreeNode p) {
            if (root != null) {
                g.computeIfAbsent(root, k -> new ArrayList<>()).add(p);
                g.computeIfAbsent(p, k -> new ArrayList<>()).add(root);
                dfs(root.left, root);
                dfs(root.right, root);
            }
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        unordered_map<TreeNode*, vector<TreeNode*>> g;
    
        int findClosestLeaf(TreeNode* root, int k) {
            dfs(root, nullptr);
            queue<TreeNode*> q;
            for (auto& e : g) {
                if (e.first && e.first->val == k) {
                    q.push(e.first);
                    break;
                }
            }
            unordered_set<TreeNode*> seen;
            while (!q.empty()) {
                auto node = q.front();
                q.pop();
                seen.insert(node);
                if (node) {
                    if (!node->left && !node->right) return node->val;
                    for (auto next : g[node]) {
                        if (!seen.count(next))
                            q.push(next);
                    }
                }
            }
            return 0;
        }
    
        void dfs(TreeNode* root, TreeNode* p) {
            if (!root) return;
            g[root].push_back(p);
            g[p].push_back(root);
            dfs(root->left, root);
            dfs(root->right, root);
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def findClosestLeaf(self, root: TreeNode, k: int) -> int:
            def dfs(root, p):
                if root:
                    g[root].append(p)
                    g[p].append(root)
                    dfs(root.left, root)
                    dfs(root.right, root)
    
            g = defaultdict(list)
            dfs(root, None)
            q = deque([node for node in g if node and node.val == k])
            seen = set()
            while q:
                node = q.popleft()
                seen.add(node)
                if node:
                    if node.left is None and node.right is None:
                        return node.val
                    for next in g[node]:
                        if next not in seen:
                            q.append(next)
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func findClosestLeaf(root *TreeNode, k int) int {
    	g := make(map[*TreeNode][]*TreeNode)
    	var dfs func(root, p *TreeNode)
    	dfs = func(root, p *TreeNode) {
    		if root == nil {
    			return
    		}
    		g[root] = append(g[root], p)
    		g[p] = append(g[p], root)
    		dfs(root.Left, root)
    		dfs(root.Right, root)
    	}
    	dfs(root, nil)
    	var q []*TreeNode
    	for t, _ := range g {
    		if t != nil && t.Val == k {
    			q = append(q, t)
    			break
    		}
    	}
    	seen := make(map[*TreeNode]bool)
    	for len(q) > 0 {
    		node := q[0]
    		q = q[1:]
    		seen[node] = true
    		if node != nil {
    			if node.Left == nil && node.Right == nil {
    				return node.Val
    			}
    			for _, next := range g[node] {
    				if !seen[next] {
    					q = append(q, next)
    				}
    			}
    		}
    	}
    	return 0
    }
    

All Problems

All Solutions