Welcome to Subscribe On Youtube
Question
Formatted question description: https://leetcode.ca/all/653.html
Given the root
of a binary search tree and an integer k
, return true
if there exist two elements in the BST such that their sum is equal to k
, or false
otherwise.
Example 1:
Input: root = [5,3,6,2,4,null,7], k = 9 Output: true
Example 2:
Input: root = [5,3,6,2,4,null,7], k = 28 Output: false
Constraints:
- The number of nodes in the tree is in the range
[1, 104]
. -104 <= Node.val <= 104
root
is guaranteed to be a valid binary search tree.-105 <= k <= 105
Algorithm
As long as it is the question of the sum of two numbers, you must remember to try to do it with HashSet
.
This question is just to turn the array into a binary tree. We need to traverse the binary tree and use a HashSet. In the recursive function function,
- if node is empty, return false.
- If k minus the current node value exists in the HashSet, return true directly;
- otherwise, add the current node value to the HashSet, and then call the recursive function on the left and right sub-nodes and return together.
Code
-
public class Two_Sum_IV_Input_is_a_BST { /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ // https://leetcode.com/problems/two-sum-iv-input-is-a-bst/solution/ public class Solution_queue { public boolean findTarget(TreeNode root, int k) { Set<Integer> set = new HashSet<>(); Queue<TreeNode> queue = new LinkedList<>(); queue.add(root); while (!queue.isEmpty()) { if (queue.peek() != null) { TreeNode node = queue.remove(); if (set.contains(k - node.val)) return true; set.add(node.val); queue.add(node.right); queue.add(node.left); } else queue.remove(); } return false; } } // time: O(N) // space: O(N) public class Solution_usingBST { // inorder traversal to get sorted list public boolean findTarget(TreeNode root, int k) { List< Integer > list = new ArrayList<>(); inorder(root, list); int l = 0, r = list.size() - 1; while (l < r) { int sum = list.get(l) + list.get(r); if (sum == k) return true; if (sum < k) l++; else r--; } return false; } public void inorder(TreeNode root, List < Integer > list) { if (root == null) return; inorder(root.left, list); list.add(root.val); inorder(root.right, list); } } // time: O(N) // space: O(N) public class Solution { public boolean findTarget(TreeNode root, int k) { Set < Integer > set = new HashSet(); return find(root, k, set); } public boolean find(TreeNode root, int k, Set< Integer > set) { if (root == null) { return false; } if (set.contains(k - root.val)) { return true; } set.add(root.val); return find(root.left, k, set) || find(root.right, k, set); } } }
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { Set<Integer> set = new HashSet<Integer>(); public boolean findTarget(TreeNode root, int k) { prePost(root); for (int key : set) { if (set.contains(k - key) && k - key != key) return true; } return false; } public void prePost(TreeNode root) { if (root == null) return; set.add(root.val); prePost(root.left); prePost(root.right); } } ############ /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { private Set<Integer> vis = new HashSet<>(); private int k; public boolean findTarget(TreeNode root, int k) { this.k = k; return dfs(root); } private boolean dfs(TreeNode root) { if (root == null) { return false; } if (vis.contains(k - root.val)) { return true; } vis.add(root.val); return dfs(root.left) || dfs(root.right); } }
-
// OJ: https://leetcode.com/problems/two-sum-iv-input-is-a-bst/solution/ // Time: O(NH) // Space: O(H) class Solution { bool dfs(TreeNode *root, int k, int mn = INT_MIN, int mx = INT_MAX) { if (!root || root->val <= mn || root->val >= mx) return false; if (root->val == k) return true; return root->val < k ? dfs(root->right, k, root->val, mx) : dfs(root->left, k, mn, root->val); } bool find(TreeNode *root, int k, TreeNode *from) { if (!root) return false; if (2 * root->val != k && dfs(from, k - root->val)) return true; return find(root->left, k, from) || find(root->right, k, from); } public: bool findTarget(TreeNode* root, int k) { return find(root, k, root); } };
-
class BSTIterator: def __init__(self, root: Optional[TreeNode], leftToRight: bool): self.stack = [] self.leftToRight = leftToRight self._pushUntilNone(root) def next(self) -> int: node = self.stack.pop() if self.leftToRight: self._pushUntilNone(node.right) else: self._pushUntilNone(node.left) return node.val # if passed in a None node, then None will not be pushed to stack def _pushUntilNone(self, root: Optional[TreeNode]): while root: self.stack.append(root) root = root.left if self.leftToRight else root.right class Solution: def findTarget(self, root: Optional[TreeNode], k: int) -> bool: if not root: return False left = BSTIterator(root, True) right = BSTIterator(root, False) l = left.next() r = right.next() while l < r: summ = l + r if summ == k: return True if summ < k: l = left.next() else: r = right.next() return False ########### # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def findTarget(self, root: Optional[TreeNode], k: int) -> bool: def dfs(root): if root is None: return False if k - root.val in vis: return True vis.add(root.val) return dfs(root.left) or dfs(root.right) vis = set() return dfs(root) ############ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def findTarget(self, root, k): """ :type root: TreeNode :type k: int :rtype: bool """ if not root: return False bfs, s = [root], set() for i in bfs: print i.val if k - i.val in s : return True s.add(i.val) if i.left : bfs.append(i.left) if i.right : bfs.append(i.right) print([b.val for b in bfs]) return False
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func findTarget(root *TreeNode, k int) bool { vis := map[int]bool{} var dfs func(*TreeNode) bool dfs = func(root *TreeNode) bool { if root == nil { return false } if vis[k-root.Val] { return true } vis[root.Val] = true return dfs(root.Left) || dfs(root.Right) } return dfs(root) }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function findTarget(root: TreeNode | null, k: number): boolean { const dfs = (root: TreeNode | null) => { if (!root) { return false; } if (vis.has(k - root.val)) { return true; } vis.add(root.val); return dfs(root.left) || dfs(root.right); }; const vis = new Set<number>(); return dfs(root); }
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::cell::RefCell; use std::collections::{HashSet, VecDeque}; use std::rc::Rc; impl Solution { pub fn find_target(root: Option<Rc<RefCell<TreeNode>>>, k: i32) -> bool { let mut set = HashSet::new(); let mut q = VecDeque::new(); q.push_back(root); while let Some(node) = q.pop_front() { if let Some(node) = node { let mut node = node.as_ref().borrow_mut(); if set.contains(&node.val) { return true; } set.insert(k - node.val); q.push_back(node.left.take()); q.push_back(node.right.take()); } } false } }