Welcome to Subscribe On Youtube
647. Palindromic Substrings
Description
Given a string s
, return the number of palindromic substrings in it.
A string is a palindrome when it reads the same backward as forward.
A substring is a contiguous sequence of characters within the string.
Example 1:
Input: s = "abc" Output: 3 Explanation: Three palindromic strings: "a", "b", "c".
Example 2:
Input: s = "aaa" Output: 6 Explanation: Six palindromic strings: "a", "a", "a", "aa", "aa", "aaa".
Constraints:
1 <= s.length <= 1000
s
consists of lowercase English letters.
Solutions
-
class Solution { public int countSubstrings(String s) { StringBuilder sb = new StringBuilder("^#"); for (char ch : s.toCharArray()) { sb.append(ch).append('#'); } String t = sb.append('$').toString(); int n = t.length(); int[] p = new int[n]; int pos = 0, maxRight = 0; int ans = 0; for (int i = 1; i < n - 1; i++) { p[i] = maxRight > i ? Math.min(maxRight - i, p[2 * pos - i]) : 1; while (t.charAt(i - p[i]) == t.charAt(i + p[i])) { p[i]++; } if (i + p[i] > maxRight) { maxRight = i + p[i]; pos = i; } ans += p[i] / 2; } return ans; } }
-
class Solution { public: int countSubstrings(string s) { int ans = 0; int n = s.size(); for (int k = 0; k < n * 2 - 1; ++k) { int i = k / 2, j = (k + 1) / 2; while (~i && j < n && s[i] == s[j]) { ++ans; --i; ++j; } } return ans; } };
-
class Solution: def countSubstrings(self, s: str) -> int: t = '^#' + '#'.join(s) + '#$' n = len(t) p = [0 for _ in range(n)] pos, maxRight = 0, 0 ans = 0 for i in range(1, n - 1): p[i] = min(maxRight - i, p[2 * pos - i]) if maxRight > i else 1 while t[i - p[i]] == t[i + p[i]]: p[i] += 1 if i + p[i] > maxRight: maxRight = i + p[i] pos = i ans += p[i] // 2 return ans
-
func countSubstrings(s string) int { ans, n := 0, len(s) for k := 0; k < n*2-1; k++ { i, j := k/2, (k+1)/2 for i >= 0 && j < n && s[i] == s[j] { ans++ i, j = i-1, j+1 } } return ans }
-
/** * @param {string} s * @return {number} */ var countSubstrings = function (s) { let ans = 0; const n = s.length; for (let k = 0; k < n * 2 - 1; ++k) { let i = k >> 1; let j = (k + 1) >> 1; while (~i && j < n && s[i] == s[j]) { ++ans; --i; ++j; } } return ans; };