Welcome to Subscribe On Youtube

606. Construct String from Binary Tree

Description

Given the root of a binary tree, construct a string consisting of parenthesis and integers from a binary tree with the preorder traversal way, and return it.

Omit all the empty parenthesis pairs that do not affect the one-to-one mapping relationship between the string and the original binary tree.

 

Example 1:

Input: root = [1,2,3,4]
Output: "1(2(4))(3)"
Explanation: Originally, it needs to be "1(2(4)())(3()())", but you need to omit all the unnecessary empty parenthesis pairs. And it will be "1(2(4))(3)"

Example 2:

Input: root = [1,2,3,null,4]
Output: "1(2()(4))(3)"
Explanation: Almost the same as the first example, except we cannot omit the first parenthesis pair to break the one-to-one mapping relationship between the input and the output.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 104].
  • -1000 <= Node.val <= 1000

Solutions

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public String tree2str(TreeNode root) {
            if (root == null) {
                return "";
            }
            if (root.left == null && root.right == null) {
                return root.val + "";
            }
            if (root.right == null) {
                return root.val + "(" + tree2str(root.left) + ")";
            }
            return root.val + "(" + tree2str(root.left) + ")(" + tree2str(root.right) + ")";
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        string tree2str(TreeNode* root) {
            if (!root) return "";
            if (!root->left && !root->right) return to_string(root->val);
            if (!root->right) return to_string(root->val) + "(" + tree2str(root->left) + ")";
            return to_string(root->val) + "(" + tree2str(root->left) + ")(" + tree2str(root->right) + ")";
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def tree2str(self, root: Optional[TreeNode]) -> str:
            def dfs(root):
                if root is None:
                    return ''
                if root.left is None and root.right is None:
                    return str(root.val)
                if root.right is None:
                    return f'{root.val}({dfs(root.left)})'
                return f'{root.val}({dfs(root.left)})({dfs(root.right)})'
    
            return dfs(root)
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func tree2str(root *TreeNode) string {
    	if root == nil {
    		return ""
    	}
    	if root.Left == nil && root.Right == nil {
    		return strconv.Itoa(root.Val)
    	}
    	if root.Right == nil {
    		return strconv.Itoa(root.Val) + "(" + tree2str(root.Left) + ")"
    	}
    	return strconv.Itoa(root.Val) + "(" + tree2str(root.Left) + ")(" + tree2str(root.Right) + ")"
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function tree2str(root: TreeNode | null): string {
        if (root == null) {
            return '';
        }
        if (root.left == null && root.right == null) {
            return `${root.val}`;
        }
        return `${root.val}(${root.left ? tree2str(root.left) : ''})${
            root.right ? `(${tree2str(root.right)})` : ''
        }`;
    }
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::cell::RefCell;
    use std::rc::Rc;
    impl Solution {
        fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, res: &mut String) {
            if let Some(node) = root {
                let node = node.borrow();
                res.push_str(node.val.to_string().as_str());
    
                if node.left.is_none() && node.right.is_none() {
                    return;
                }
                res.push('(');
                if node.left.is_some() {
                    Self::dfs(&node.left, res);
                }
                res.push(')');
                if node.right.is_some() {
                    res.push('(');
                    Self::dfs(&node.right, res);
                    res.push(')');
                }
            }
        }
    
        pub fn tree2str(root: Option<Rc<RefCell<TreeNode>>>) -> String {
            let mut res = String::new();
            Self::dfs(&root, &mut res);
            res
        }
    }
    
    

All Problems

All Solutions