# 605. Can Place Flowers

## Description

You have a long flowerbed in which some of the plots are planted, and some are not. However, flowers cannot be planted in adjacent plots.

Given an integer array flowerbed containing 0's and 1's, where 0 means empty and 1 means not empty, and an integer n, return true if n new flowers can be planted in the flowerbed without violating the no-adjacent-flowers rule and false otherwise.

Example 1:

Input: flowerbed = [1,0,0,0,1], n = 1
Output: true


Example 2:

Input: flowerbed = [1,0,0,0,1], n = 2
Output: false


Constraints:

• 1 <= flowerbed.length <= 2 * 104
• flowerbed[i] is 0 or 1.
• There are no two adjacent flowers in flowerbed.
• 0 <= n <= flowerbed.length

## Solutions

Solution 1: Greedy

We directly traverse the array $flowerbed$. For each position $i$, if $flowerbed[i]=0$ and its adjacent positions on the left and right are also $0$, then we can plant a flower at this position. Otherwise, we cannot. Finally, we count the number of flowers that can be planted. If it is not less than $n$, we return $true$, otherwise we return $false$.

The time complexity is $O(n)$, where $n$ is the length of the array $flowerbed$. We only need to traverse the array once. The space complexity is $O(1)$.

• class Solution {
public boolean canPlaceFlowers(int[] flowerbed, int n) {
int m = flowerbed.length;
for (int i = 0; i < m; ++i) {
int l = i == 0 ? 0 : flowerbed[i - 1];
int r = i == m - 1 ? 0 : flowerbed[i + 1];
if (l + flowerbed[i] + r == 0) {
flowerbed[i] = 1;
--n;
}
}
return n <= 0;
}
}

• class Solution {
public:
bool canPlaceFlowers(vector<int>& flowerbed, int n) {
int m = flowerbed.size();
for (int i = 0; i < m; ++i) {
int l = i == 0 ? 0 : flowerbed[i - 1];
int r = i == m - 1 ? 0 : flowerbed[i + 1];
if (l + flowerbed[i] + r == 0) {
flowerbed[i] = 1;
--n;
}
}
return n <= 0;
}
};

• class Solution:
def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:
flowerbed = [0] + flowerbed + [0]
for i in range(1, len(flowerbed) - 1):
if sum(flowerbed[i - 1 : i + 2]) == 0:
flowerbed[i] = 1
n -= 1
return n <= 0


• func canPlaceFlowers(flowerbed []int, n int) bool {
m := len(flowerbed)
for i, v := range flowerbed {
l, r := 0, 0
if i > 0 {
l = flowerbed[i-1]
}
if i < m-1 {
r = flowerbed[i+1]
}
if l+v+r == 0 {
flowerbed[i] = 1
n--
}
}
return n <= 0
}

• function canPlaceFlowers(flowerbed: number[], n: number): boolean {
const m = flowerbed.length;
for (let i = 0; i < m; ++i) {
const l = i === 0 ? 0 : flowerbed[i - 1];
const r = i === m - 1 ? 0 : flowerbed[i + 1];
if (l + flowerbed[i] + r === 0) {
flowerbed[i] = 1;
--n;
}
}
return n <= 0;
}


• class Solution {
/**
* @param Integer[] $flowerbed * @param Integer$n
* @return Boolean
*/
function canPlaceFlowers($flowerbed,$n) {
array_push($flowerbed, 0); array_unshift($flowerbed, 0);
for ($i = 1;$i < count($flowerbed) - 1;$i++) {
if ($flowerbed[$i] === 0) {
if ($flowerbed[$i - 1] === 0 && $flowerbed[$i + 1] === 0) {
$flowerbed[$i] = 1;
$n--; } } } return$n <= 0;
}
}

• impl Solution {
pub fn can_place_flowers(flowerbed: Vec<i32>, n: i32) -> bool {
let (mut flowers, mut cnt) = (vec![0], 0);
flowers.append(&mut flowerbed.clone());
flowers.push(0);

for i in 1..flowers.len() - 1 {
let (l, r) = (flowers[i - 1], flowers[i + 1]);
if l + flowers[i] + r == 0 {
flowers[i] = 1;
cnt += 1;
}
}
cnt >= n
}
}