Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/558.html

558. Quad Tree Intersection (Easy)

A quadtree is a tree data in which each internal node has exactly four children: topLeft, topRight, bottomLeft and bottomRight. Quad trees are often used to partition a two-dimensional space by recursively subdividing it into four quadrants or regions.

We want to store True/False information in our quad tree. The quad tree is used to represent a N * N boolean grid. For each node, it will be subdivided into four children nodes until the values in the region it represents are all the same. Each node has another two boolean attributes : isLeaf and val. isLeaf is true if and only if the node is a leaf node. The val attribute for a leaf node contains the value of the region it represents.

For example, below are two quad trees A and B:

A:
+-------+-------+   T: true
|       |       |   F: false
|   T   |   T   |
|       |       |
+-------+-------+
|       |       |
|   F   |   F   |
|       |       |
+-------+-------+
topLeft: T
topRight: T
bottomLeft: F
bottomRight: F

B:               
+-------+---+---+
|       | F | F |
|   T   +---+---+
|       | T | T |
+-------+---+---+
|       |       |
|   T   |   F   |
|       |       |
+-------+-------+
topLeft: T
topRight:
     topLeft: F
     topRight: F
     bottomLeft: T
     bottomRight: T
bottomLeft: T
bottomRight: F

 

Your task is to implement a function that will take two quadtrees and return a quadtree that represents the logical OR (or union) of the two trees.

A:                 B:                 C (A or B):
+-------+-------+  +-------+---+---+  +-------+-------+
|       |       |  |       | F | F |  |       |       |
|   T   |   T   |  |   T   +---+---+  |   T   |   T   |
|       |       |  |       | T | T |  |       |       |
+-------+-------+  +-------+---+---+  +-------+-------+
|       |       |  |       |       |  |       |       |
|   F   |   F   |  |   T   |   F   |  |   T   |   F   |
|       |       |  |       |       |  |       |       |
+-------+-------+  +-------+-------+  +-------+-------+

Note:

  1. Both A and B represent grids of size N * N.
  2. N is guaranteed to be a power of 2.
  3. If you want to know more about the quad tree, you can refer to its wiki.
  4. The logic OR operation is defined as this: "A or B" is true if A is true, or if B is true, or if both A and B are true.

Solution 1.

  • /*
    // Definition for a QuadTree node.
    class Node {
        public boolean val;
        public boolean isLeaf;
        public Node topLeft;
        public Node topRight;
        public Node bottomLeft;
        public Node bottomRight;
    
        public Node() {}
    
        public Node(boolean _val,boolean _isLeaf,Node _topLeft,Node _topRight,Node _bottomLeft,Node _bottomRight) {
            val = _val;
            isLeaf = _isLeaf;
            topLeft = _topLeft;
            topRight = _topRight;
            bottomLeft = _bottomLeft;
            bottomRight = _bottomRight;
        }
    };
    */
    class Solution {
        public Node intersect(Node quadTree1, Node quadTree2) {
            if (quadTree1.isLeaf)
                return quadTree1.val ? quadTree1 : quadTree2;
            else if (quadTree2.isLeaf)
                return quadTree2.val ? quadTree2 : quadTree1;
            else {
                Node root = new Node();
                Node topLeft = intersect(quadTree1.topLeft, quadTree2.topLeft);
                Node topRight = intersect(quadTree1.topRight, quadTree2.topRight);
                Node bottomLeft = intersect(quadTree1.bottomLeft, quadTree2.bottomLeft);
                Node bottomRight = intersect(quadTree1.bottomRight, quadTree2.bottomRight);
                if (topLeft.val == topRight.val && topRight.val == bottomLeft.val && bottomLeft.val == bottomRight.val && topLeft.isLeaf && topRight.isLeaf && bottomLeft.isLeaf && bottomRight.isLeaf) {
                    root.val = topLeft.val;
                    root.isLeaf = true;
                } else {
                    root.topLeft = topLeft;
                    root.topRight = topRight;
                    root.bottomLeft = bottomLeft;
                    root.bottomRight = bottomRight;
                }
                return root;
            }
        }
    }
    
    ############
    
    /*
    // Definition for a QuadTree node.
    class Node {
        public boolean val;
        public boolean isLeaf;
        public Node topLeft;
        public Node topRight;
        public Node bottomLeft;
        public Node bottomRight;
    
        public Node() {}
    
        public Node(boolean _val,boolean _isLeaf,Node _topLeft,Node _topRight,Node _bottomLeft,Node
    _bottomRight) { val = _val; isLeaf = _isLeaf; topLeft = _topLeft; topRight = _topRight; bottomLeft =
    _bottomLeft; bottomRight = _bottomRight;
        }
    };
    */
    
    class Solution {
        public Node intersect(Node quadTree1, Node quadTree2) {
            return dfs(quadTree1, quadTree2);
        }
    
        private Node dfs(Node t1, Node t2) {
            if (t1.isLeaf && t2.isLeaf) {
                return new Node(t1.val || t2.val, true);
            }
            if (t1.isLeaf) {
                return t1.val ? t1 : t2;
            }
            if (t2.isLeaf) {
                return t2.val ? t2 : t1;
            }
            Node res = new Node();
            res.topLeft = dfs(t1.topLeft, t2.topLeft);
            res.topRight = dfs(t1.topRight, t2.topRight);
            res.bottomLeft = dfs(t1.bottomLeft, t2.bottomLeft);
            res.bottomRight = dfs(t1.bottomRight, t2.bottomRight);
            boolean isLeaf = res.topLeft.isLeaf && res.topRight.isLeaf && res.bottomLeft.isLeaf
                && res.bottomRight.isLeaf;
            boolean sameVal = res.topLeft.val == res.topRight.val
                && res.topRight.val == res.bottomLeft.val && res.bottomLeft.val == res.bottomRight.val;
            if (isLeaf && sameVal) {
                res = res.topLeft;
            }
            return res;
        }
    }
    
  • // OJ: https://leetcode.com/problems/quad-tree-intersection/
    // Time: O(logN)
    // Space: O(logN)
    class Solution {
    public:
        Node* intersect(Node* quadTree1, Node* quadTree2) {
            if (quadTree1->isLeaf) return quadTree1->val ? quadTree1 : quadTree2;
            if (quadTree2->isLeaf) return quadTree2->val ? quadTree2 : quadTree1;
            auto tl = intersect(quadTree1->topLeft, quadTree2->topLeft);
            auto tr = intersect(quadTree1->topRight, quadTree2->topRight);
            auto bl = intersect(quadTree1->bottomLeft, quadTree2->bottomLeft);
            auto br = intersect(quadTree1->bottomRight, quadTree2->bottomRight);
            int val = tl->val;
            if (tl->isLeaf && tr->isLeaf && bl->isLeaf && br->isLeaf
                && val == tr->val && val == bl->val && val == br->val) {
                delete tl;
                delete tr;
                delete bl;
                delete br;
                return new Node(val, true, NULL, NULL, NULL, NULL);
            }
            return new Node(false, false, tl, tr, bl, br);
        }
    };
    
  • """
    # Definition for a QuadTree node.
    class Node:
        def __init__(self, val, isLeaf, topLeft, topRight, bottomLeft, bottomRight):
            self.val = val
            self.isLeaf = isLeaf
            self.topLeft = topLeft
            self.topRight = topRight
            self.bottomLeft = bottomLeft
            self.bottomRight = bottomRight
    """
    
    
    class Solution:
        def intersect(self, quadTree1: "Node", quadTree2: "Node") -> "Node":
            def dfs(t1, t2):
                if t1.isLeaf and t2.isLeaf:
                    return Node(t1.val or t2.val, True)
                if t1.isLeaf:
                    return t1 if t1.val else t2
                if t2.isLeaf:
                    return t2 if t2.val else t1
                res = Node()
                res.topLeft = dfs(t1.topLeft, t2.topLeft)
                res.topRight = dfs(t1.topRight, t2.topRight)
                res.bottomLeft = dfs(t1.bottomLeft, t2.bottomLeft)
                res.bottomRight = dfs(t1.bottomRight, t2.bottomRight)
                isLeaf = (
                    res.topLeft.isLeaf
                    and res.topRight.isLeaf
                    and res.bottomLeft.isLeaf
                    and res.bottomRight.isLeaf
                )
                sameVal = (
                    res.topLeft.val
                    == res.topRight.val
                    == res.bottomLeft.val
                    == res.bottomRight.val
                )
                if isLeaf and sameVal:
                    res = res.topLeft
                return res
    
            return dfs(quadTree1, quadTree2)
    
    ############
    
    """
    # Definition for a QuadTree node.
    class Node(object):
        def __init__(self, val, isLeaf, topLeft, topRight, bottomLeft, bottomRight):
            self.val = val
            self.isLeaf = isLeaf
            self.topLeft = topLeft
            self.topRight = topRight
            self.bottomLeft = bottomLeft
            self.bottomRight = bottomRight
    """
    class Solution(object):
        def intersect(self, q1, q2):
            """
            :type q1: Node
            :type q2: Node
            :rtype: Node
            """
            if q1.isLeaf:
                return q1 if q1.val else q2
            if q2.isLeaf:
                return q2 if q2.val else q1
            
            q1.topLeft = self.intersect(q1.topLeft, q2.topLeft)
            q1.topRight = self.intersect(q1.topRight, q2.topRight)
            q1.bottomLeft = self.intersect(q1.bottomLeft, q2.bottomLeft)
            q1.bottomRight = self.intersect(q1.bottomRight, q2.bottomRight)
            
            if q1.topLeft.isLeaf and q1.topRight.isLeaf and q1.bottomLeft.isLeaf and q1.bottomRight.isLeaf:
                if q1.topLeft.val == q1.topRight.val == q1.bottomLeft.val == q1.bottomRight.val:
                    q1.isLeaf = True
                    q1.val = q1.topLeft.val
            return q1
    
  • /**
     * Definition for a QuadTree node.
     * type Node struct {
     *     Val bool
     *     IsLeaf bool
     *     TopLeft *Node
     *     TopRight *Node
     *     BottomLeft *Node
     *     BottomRight *Node
     * }
     */
    
    func intersect(quadTree1 *Node, quadTree2 *Node) *Node {
    	var dfs func(*Node, *Node) *Node
    	dfs = func(t1, t2 *Node) *Node {
    		if t1.IsLeaf && t2.IsLeaf {
    			return &Node{Val: t1.Val || t2.Val, IsLeaf: true}
    		}
    		if t1.IsLeaf {
    			if t1.Val {
    				return t1
    			}
    			return t2
    		}
    		if t2.IsLeaf {
    			if t2.Val {
    				return t2
    			}
    			return t1
    		}
    		res := &Node{}
    		res.TopLeft = dfs(t1.TopLeft, t2.TopLeft)
    		res.TopRight = dfs(t1.TopRight, t2.TopRight)
    		res.BottomLeft = dfs(t1.BottomLeft, t2.BottomLeft)
    		res.BottomRight = dfs(t1.BottomRight, t2.BottomRight)
    		isLeaf := res.TopLeft.IsLeaf && res.TopRight.IsLeaf && res.BottomLeft.IsLeaf && res.BottomRight.IsLeaf
    		sameVal := res.TopLeft.Val == res.TopRight.Val && res.TopRight.Val == res.BottomLeft.Val && res.BottomLeft.Val == res.BottomRight.Val
    		if isLeaf && sameVal {
    			res = res.TopLeft
    		}
    		return res
    	}
    
    	return dfs(quadTree1, quadTree2)
    }
    

All Problems

All Solutions