Welcome to Subscribe On Youtube

547. Number of Provinces

Description

There are n cities. Some of them are connected, while some are not. If city a is connected directly with city b, and city b is connected directly with city c, then city a is connected indirectly with city c.

A province is a group of directly or indirectly connected cities and no other cities outside of the group.

You are given an n x n matrix isConnected where isConnected[i][j] = 1 if the ith city and the jth city are directly connected, and isConnected[i][j] = 0 otherwise.

Return the total number of provinces.

 

Example 1:

Input: isConnected = [[1,1,0],[1,1,0],[0,0,1]]
Output: 2

Example 2:

Input: isConnected = [[1,0,0],[0,1,0],[0,0,1]]
Output: 3

 

Constraints:

  • 1 <= n <= 200
  • n == isConnected.length
  • n == isConnected[i].length
  • isConnected[i][j] is 1 or 0.
  • isConnected[i][i] == 1
  • isConnected[i][j] == isConnected[j][i]

Solutions

  • class Solution {
        private int[][] g;
        private boolean[] vis;
    
        public int findCircleNum(int[][] isConnected) {
            g = isConnected;
            int n = g.length;
            vis = new boolean[n];
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                if (!vis[i]) {
                    dfs(i);
                    ++ans;
                }
            }
            return ans;
        }
    
        private void dfs(int i) {
            vis[i] = true;
            for (int j = 0; j < g.length; ++j) {
                if (!vis[j] && g[i][j] == 1) {
                    dfs(j);
                }
            }
        }
    }
    
  • class Solution {
    public:
        int findCircleNum(vector<vector<int>>& isConnected) {
            int n = isConnected.size();
            int ans = 0;
            bool vis[n];
            memset(vis, false, sizeof(vis));
            function<void(int)> dfs = [&](int i) {
                vis[i] = true;
                for (int j = 0; j < n; ++j) {
                    if (!vis[j] && isConnected[i][j]) {
                        dfs(j);
                    }
                }
            };
            for (int i = 0; i < n; ++i) {
                if (!vis[i]) {
                    dfs(i);
                    ++ans;
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def findCircleNum(self, isConnected: List[List[int]]) -> int:
            def dfs(i: int):
                vis[i] = True
                for j, x in enumerate(isConnected[i]):
                    if not vis[j] and x:
                        dfs(j)
    
            n = len(isConnected)
            vis = [False] * n
            ans = 0
            for i in range(n):
                if not vis[i]:
                    dfs(i)
                    ans += 1
            return ans
    
    
  • func findCircleNum(isConnected [][]int) (ans int) {
    	n := len(isConnected)
    	vis := make([]bool, n)
    	var dfs func(int)
    	dfs = func(i int) {
    		vis[i] = true
    		for j, x := range isConnected[i] {
    			if !vis[j] && x == 1 {
    				dfs(j)
    			}
    		}
    	}
    	for i, v := range vis {
    		if !v {
    			ans++
    			dfs(i)
    		}
    	}
    	return
    }
    
  • function findCircleNum(isConnected: number[][]): number {
        const n = isConnected.length;
        const vis: boolean[] = new Array(n).fill(false);
        const dfs = (i: number) => {
            vis[i] = true;
            for (let j = 0; j < n; ++j) {
                if (!vis[j] && isConnected[i][j]) {
                    dfs(j);
                }
            }
        };
        let ans = 0;
        for (let i = 0; i < n; ++i) {
            if (!vis[i]) {
                dfs(i);
                ++ans;
            }
        }
        return ans;
    }
    
    
  • impl Solution {
        fn dfs(is_connected: &mut Vec<Vec<i32>>, vis: &mut Vec<bool>, i: usize) {
            vis[i] = true;
            for j in 0..is_connected.len() {
                if vis[j] || is_connected[i][j] == 0 {
                    continue;
                }
                Self::dfs(is_connected, vis, j);
            }
        }
    
        pub fn find_circle_num(mut is_connected: Vec<Vec<i32>>) -> i32 {
            let n = is_connected.len();
            let mut vis = vec![false; n];
            let mut res = 0;
            for i in 0..n {
                if vis[i] {
                    continue;
                }
                res += 1;
                Self::dfs(&mut is_connected, &mut vis, i);
            }
            res
        }
    }
    
    

All Problems

All Solutions