Welcome to Subscribe On Youtube
496. Next Greater Element I
Description
The next greater element of some element x
in an array is the first greater element that is to the right of x
in the same array.
You are given two distinct 0-indexed integer arrays nums1
and nums2
, where nums1
is a subset of nums2
.
For each 0 <= i < nums1.length
, find the index j
such that nums1[i] == nums2[j]
and determine the next greater element of nums2[j]
in nums2
. If there is no next greater element, then the answer for this query is -1
.
Return an array ans
of length nums1.length
such that ans[i]
is the next greater element as described above.
Example 1:
Input: nums1 = [4,1,2], nums2 = [1,3,4,2] Output: [-1,3,-1] Explanation: The next greater element for each value of nums1 is as follows: - 4 is underlined in nums2 = [1,3,4,2]. There is no next greater element, so the answer is -1. - 1 is underlined in nums2 = [1,3,4,2]. The next greater element is 3. - 2 is underlined in nums2 = [1,3,4,2]. There is no next greater element, so the answer is -1.
Example 2:
Input: nums1 = [2,4], nums2 = [1,2,3,4] Output: [3,-1] Explanation: The next greater element for each value of nums1 is as follows: - 2 is underlined in nums2 = [1,2,3,4]. The next greater element is 3. - 4 is underlined in nums2 = [1,2,3,4]. There is no next greater element, so the answer is -1.
Constraints:
1 <= nums1.length <= nums2.length <= 1000
0 <= nums1[i], nums2[i] <= 104
- All integers in
nums1
andnums2
are unique. - All the integers of
nums1
also appear innums2
.
Follow up: Could you find an O(nums1.length + nums2.length)
solution?
Solutions
-
class Solution { public int[] nextGreaterElement(int[] nums1, int[] nums2) { Deque<Integer> stk = new ArrayDeque<>(); Map<Integer, Integer> mp = new HashMap<>(); for (int num : nums2) { while (!stk.isEmpty() && stk.peek() < num) { mp.put(stk.pop(), num); } stk.push(num); } int n = nums1.length; int[] ans = new int[n]; for (int i = 0; i < n; ++i) { ans[i] = mp.getOrDefault(nums1[i], -1); } return ans; } }
-
class Solution { public: vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) { stack<int> stk; unordered_map<int, int> m; for (int& v : nums2) { while (!stk.empty() && stk.top() < v) { m[stk.top()] = v; stk.pop(); } stk.push(v); } vector<int> ans; for (int& v : nums1) ans.push_back(m.count(v) ? m[v] : -1); return ans; } };
-
class Solution: def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]: m = {} stk = [] for v in nums2: while stk and stk[-1] < v: m[stk.pop()] = v stk.append(v) return [m.get(v, -1) for v in nums1]
-
func nextGreaterElement(nums1 []int, nums2 []int) []int { stk := []int{} m := map[int]int{} for _, v := range nums2 { for len(stk) > 0 && stk[len(stk)-1] < v { m[stk[len(stk)-1]] = v stk = stk[:len(stk)-1] } stk = append(stk, v) } var ans []int for _, v := range nums1 { val, ok := m[v] if !ok { val = -1 } ans = append(ans, val) } return ans }
-
function nextGreaterElement(nums1: number[], nums2: number[]): number[] { const map = new Map<number, number>(); const stack: number[] = [Infinity]; for (const num of nums2) { while (num > stack[stack.length - 1]) { map.set(stack.pop(), num); } stack.push(num); } return nums1.map(num => map.get(num) || -1); }
-
/** * @param {number[]} nums1 * @param {number[]} nums2 * @return {number[]} */ var nextGreaterElement = function (nums1, nums2) { let stk = []; let m = {}; for (let v of nums2) { while (stk && stk[stk.length - 1] < v) { m[stk.pop()] = v; } stk.push(v); } return nums1.map(e => m[e] || -1); };
-
use std::collections::HashMap; impl Solution { pub fn next_greater_element(nums1: Vec<i32>, nums2: Vec<i32>) -> Vec<i32> { let mut map = HashMap::new(); let mut stack = Vec::new(); for num in nums2 { while num > *stack.last().unwrap_or(&i32::MAX) { map.insert(stack.pop().unwrap(), num); } stack.push(num); } nums1 .iter() .map(|n| *map.get(n).unwrap_or(&-1)) .collect::<Vec<i32>>() } }