Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/441.html
441. Arranging Coins (Easy)
You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ Because the 4th row is incomplete, we return 3.
Related Topics:
Math, Binary Search
Solution 1. Brute Force
// OJ: https://leetcode.com/problems/arranging-coins/
// Time: O(sqrt(N))
// Space: O(1)
class Solution {
public:
int arrangeCoins(int n) {
long i = 1, sum = 0;
while (sum + i <= n) sum += i++;
return i - 1;
}
};
Solution 2. Binary Search
// OJ: https://leetcode.com/problems/arranging-coins/
// Time: O(logN)
// Space: O(1)
class Solution {
public:
int arrangeCoins(int n) {
int L = 1, R = n;
while (L <= R) {
long M = L + (R - L) / 2, sum = M * (1 + M) / 2;
if (sum == n) return M;
if (sum < n) L = M + 1;
else R = M - 1;
}
return R;
}
};
Solution 3. Math
x * (x + 1) / 2 <= n
x^2 + x - 2n <= 0
x <= (sqrt(8n + 1) - 1) / 2
// OJ: https://leetcode.com/problems/arranging-coins/
// Time: O(1)
// Space: O(1)
class Solution {
public:
int arrangeCoins(int n) {
return (sqrt((long)8 * n + 1) - 1) / 2;
}
};
-
class Solution { public int arrangeCoins(int n) { int row = 0; while (n > row) { row++; n -= row; } return row; } } ############ class Solution { public int arrangeCoins(int n) { return (int) (Math.sqrt(2) * Math.sqrt(n + 0.125) - 0.5); } }
-
// OJ: https://leetcode.com/problems/arranging-coins/ // Time: O(sqrt(N)) // Space: O(1) class Solution { public: int arrangeCoins(int n) { long i = 1, sum = 0; while (sum + i <= n) sum += i++; return i - 1; } };
-
class Solution: def arrangeCoins(self, n: int) -> int: return int(math.sqrt(2) * math.sqrt(n + 0.125) - 0.5) ############ class Solution(object): def arrangeCoins(self, n): """ :type n: int :rtype: int """ return int((((1 + 8 * n) ** 0.5) - 1) / 2)
-
func arrangeCoins(n int) int { left, right := 1, n for left < right { mid := (left + right + 1) >> 1 if (1+mid)*mid/2 <= n { left = mid } else { right = mid - 1 } } return left }