Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/430.html
430. Flatten a Multilevel Doubly Linked List (Medium)
You are given a doubly linked list which in addition to the next and previous pointers, it could have a child pointer, which may or may not point to a separate doubly linked list. These child lists may have one or more children of their own, and so on, to produce a multilevel data structure, as shown in the example below.
Flatten the list so that all the nodes appear in a single-level, doubly linked list. You are given the head of the first level of the list.
Example 1:
Input: head = [1,2,3,4,5,6,null,null,null,7,8,9,10,null,null,11,12] Output: [1,2,3,7,8,11,12,9,10,4,5,6] Explanation: The multilevel linked list in the input is as follows:After flattening the multilevel linked list it becomes:
![]()
Example 2:
Input: head = [1,2,null,3] Output: [1,3,2] Explanation: The input multilevel linked list is as follows: 1---2---NULL | 3---NULL
Example 3:
Input: head = [] Output: []
How multilevel linked list is represented in test case:
We use the multilevel linked list from Example 1 above:
1---2---3---4---5---6--NULL | 7---8---9---10--NULL | 11--12--NULL
The serialization of each level is as follows:
[1,2,3,4,5,6,null] [7,8,9,10,null] [11,12,null]
To serialize all levels together we will add nulls in each level to signify no node connects to the upper node of the previous level. The serialization becomes:
[1,2,3,4,5,6,null] [null,null,7,8,9,10,null] [null,11,12,null]
Merging the serialization of each level and removing trailing nulls we obtain:
[1,2,3,4,5,6,null,null,null,7,8,9,10,null,null,11,12]
Constraints:
- Number of Nodes will not exceed 1000.
1 <= Node.val <= 10^5
Related Topics:
Linked List, Depth-first Search
Similar Questions:
Solution 1. Recursive
// OJ: https://leetcode.com/problems/flatten-a-multilevel-doubly-linked-list/
// Time: O(N)
// Space: O(H)
class Solution {
public:
Node* flatten(Node* head) {
if (!head) return NULL;
Node dummy, *tail = &dummy;
while (head) {
auto node = head;
head = head->next;
tail->next = node;
node->prev = tail;
tail = node;
if (node->child) {
auto next = flatten(node->child);
tail->next = next;
next->prev = tail;
while (tail->next) tail = tail->next;
}
node->child = NULL;
}
dummy.next->prev = NULL;
return dummy.next;
}
};
Solution 2. Stack
// OJ: https://leetcode.com/problems/flatten-a-multilevel-doubly-linked-list/
// Time: O(N)
// Space: O(H)
class Solution {
public:
Node* flatten(Node* head) {
if (!head) return NULL;
Node dummy, *tail = &dummy;
stack<Node*> s;
s.push(head);
while (s.size()) {
auto node = s.top(), child = node->child;
tail->next = node;
node->prev = tail;
tail = node;
node->child = NULL;
if (node->next) s.top() = node->next;
else s.pop();
if (child) s.push(child);
}
dummy.next->prev = NULL;
return dummy.next;
}
};
Solution 3. Recursive
Return a pair of pointers to first node and last node so that we don’t need to traversel the flattened child again during the recursion.
// OJ: https://leetcode.com/problems/flatten-a-multilevel-doubly-linked-list/
// Time: O(N)
// Space: O(H) where H is the max depth of the child hierarchy.
class Solution {
pair<Node*, Node*> dfs(Node* head) {
if (!head) return {NULL, NULL};
pair<Node*, Node*> p = {head, NULL}; // first node, last node.
while (head) {
auto next = head->next;
auto last = head;
if (head->child) {
auto q = dfs(head->child);
head->next = q.first;
q.first->prev = head;
if (next) {
q.second->next = next;
next->prev = q.second;
} else last = q.second;
head->child = NULL;
}
if (!next) p.second = last;
head = next;
}
return p;
}
public:
Node* flatten(Node* head) {
return dfs(head).first;
}
};
Solution 4.
// OJ: https://leetcode.com/problems/flatten-a-multilevel-doubly-linked-list/
// Time: O(N)
// Space: O(1)
class Solution {
public:
Node* flatten(Node* head) {
for (auto p = head; p; p = p->next) {
if (!p->child) continue;
auto next = p->next, q = p->child;
p->next = q;
q->prev = p;
while (q->next) q = q->next;
q->next = next;
if (next) next->prev = q;
p->child = NULL;
}
return head;
}
};
-
/* // Definition for a Node. class Node { public int val; public Node prev; public Node next; public Node child; }; */ class Solution { public Node flatten(Node head) { if (head == null) return head; Stack<Node> stack = new Stack<Node>(); Node temp = head; while (!stack.isEmpty() || temp.next != null || temp.child != null) { if (temp.next != null) { if (temp.child != null) { stack.push(temp); temp = temp.child; } else temp = temp.next; } else if (temp.child != null) { Node nextNode = temp.child; temp.next = nextNode; nextNode.prev = temp; temp.child = null; } else { Node prevNode = stack.pop(); Node prevNext = prevNode.next; Node prevChild = prevNode.child; prevNode.next = prevChild; prevChild.prev = prevNode; prevNode.child = null; temp.next = prevNext; if (prevNext != null) prevNext.prev = temp; } } return head; } } ############ /* // Definition for a Node. class Node { public int val; public Node prev; public Node next; public Node child; }; */ class Solution { public Node flatten(Node head) { if (head == null) { return null; } Node dummy = new Node(); dummy.next = head; preorder(dummy, head); dummy.next.prev = null; return dummy.next; } private Node preorder(Node pre, Node cur) { if (cur == null) { return pre; } cur.prev = pre; pre.next = cur; Node t = cur.next; Node tail = preorder(cur, cur.child); cur.child = null; return preorder(tail, t); } }
-
// OJ: https://leetcode.com/problems/flatten-a-multilevel-doubly-linked-list/ // Time: O(N) // Space: O(H) class Solution { public: Node* flatten(Node* head) { if (!head) return NULL; Node dummy, *tail = &dummy; while (head) { auto node = head; head = head->next; tail->next = node; node->prev = tail; tail = node; if (node->child) { auto next = flatten(node->child); tail->next = next; next->prev = tail; while (tail->next) tail = tail->next; } node->child = NULL; } dummy.next->prev = NULL; return dummy.next; } };
-
""" # Definition for a Node. class Node: def __init__(self, val, prev, next, child): self.val = val self.prev = prev self.next = next self.child = child """ class Solution: def flatten(self, head: 'Node') -> 'Node': def preorder(pre, cur): if cur is None: return pre cur.prev = pre pre.next = cur t = cur.next tail = preorder(cur, cur.child) cur.child = None return preorder(tail, t) if head is None: return None dummy = Node(0, None, head, None) preorder(dummy, head) dummy.next.prev = None return dummy.next ############ 3 """ # Definition for a Node. class Node(object): def __init__(self, val, prev, next, child): self.val = val self.prev = prev self.next = next self.child = child """ class Solution(object): def flatten(self, head): """ :type head: Node :rtype: Node """ if not head: return None node = head while node: node_next = node.next if node.child: flattened = self.flatten(node.child) node.child = None nextNode = self.appendToList(node, flattened) node = nextNode else: node = node.next return head def appendToList(self, node, listToAppendHead): next_node = node.next node.next = listToAppendHead listToAppendHead.prev = node while node.next: node = node.next node.next = next_node if next_node: next_node.prev = node return next_node