Welcome to Subscribe On Youtube

400. Nth Digit

Description

Given an integer n, return the nth digit of the infinite integer sequence [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...].

 

Example 1:

Input: n = 3
Output: 3

Example 2:

Input: n = 11
Output: 0
Explanation: The 11th digit of the sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... is a 0, which is part of the number 10.

 

Constraints:

  • 1 <= n <= 231 - 1

Solutions

  • class Solution {
        public int findNthDigit(int n) {
            int k = 1, cnt = 9;
            while ((long) k * cnt < n) {
                n -= k * cnt;
                ++k;
                cnt *= 10;
            }
            int num = (int) Math.pow(10, k - 1) + (n - 1) / k;
            int idx = (n - 1) % k;
            return String.valueOf(num).charAt(idx) - '0';
        }
    }
    
  • class Solution {
    public:
        int findNthDigit(int n) {
            int k = 1, cnt = 9;
            while (1ll * k * cnt < n) {
                n -= k * cnt;
                ++k;
                cnt *= 10;
            }
            int num = pow(10, k - 1) + (n - 1) / k;
            int idx = (n - 1) % k;
            return to_string(num)[idx] - '0';
        }
    };
    
  • class Solution:
        def findNthDigit(self, n: int) -> int:
            k, cnt = 1, 9
            while k * cnt < n:
                n -= k * cnt
                k += 1
                cnt *= 10
            num = 10 ** (k - 1) + (n - 1) // k
            idx = (n - 1) % k
            return int(str(num)[idx])
    
    
  • func findNthDigit(n int) int {
    	k, cnt := 1, 9
    	for k*cnt < n {
    		n -= k * cnt
    		k++
    		cnt *= 10
    	}
    	num := int(math.Pow10(k-1)) + (n-1)/k
    	idx := (n - 1) % k
    	return int(strconv.Itoa(num)[idx] - '0')
    }
    
  • /**
     * @param {number} n
     * @return {number}
     */
    var findNthDigit = function (n) {
        let k = 1,
            cnt = 9;
        while (k * cnt < n) {
            n -= k * cnt;
            ++k;
            cnt *= 10;
        }
        const num = Math.pow(10, k - 1) + (n - 1) / k;
        const idx = (n - 1) % k;
        return num.toString()[idx];
    };
    
    
  • public class Solution {
        public int FindNthDigit(int n) {
            int k = 1, cnt = 9;
            while ((long) k * cnt < n) {
                n -= k * cnt;
                ++k;
                cnt *= 10;
            }
            int num = (int) Math.Pow(10, k - 1) + (n - 1) / k;
            int idx = (n - 1) % k;
            return num.ToString()[idx] - '0';
        }
    }
    

All Problems

All Solutions