Welcome to Subscribe On Youtube
Question
Formatted question description: https://leetcode.ca/all/371.html
Given two integers a
and b
, return the sum of the two integers without using the operators +
and -
.
Example 1:
Input: a = 1, b = 2 Output: 3
Example 2:
Input: a = 2, b = 3 Output: 5
Constraints:
-1000 <= a, b <= 1000
Algorithm
Bit Manipulation
, when doing addition operation, after each bit is added, there may be a Carry generated, and then the next bit calculation needs to be added to the calculation together, then can the two parts be separated, let’s look at an example 759+ 674
- If you
do not consider
the carry, you can get323
- If you
only consider
the carry, you can get1110
- Put the above two numbers holiday
323+1110=1433
is the final result
Then further analysis, if you get the first and second cases above, looking at it in binary,
- Do not consider the addition of carry,
0+0=0
,0+1=1
,1+0=1
,1+1=0
, this is the operation rule ofXOR
, - If you only consider the addition of carry
0+0=0
,0+1=0
,1+0=0
,1+1=1
, this is actually the operation ofand
, - In the third step, when the two are added, the algorithm is called recursively, and the termination condition is that when the carry is 0, the result of the first step is directly returned.
Code
-
public class Sum_of_Two_Integers { public static void main(String[] args) { Sum_of_Two_Integers out = new Sum_of_Two_Integers(); // System.out.println(out.getSum(1, 2)); // no carry // 2+2 // recurion-1: sum=0, carry= (10)左移1位 =(100)=4 // recursion-2: a=0,b=4 // recursion-3: b=0 System.out.println(out.getSum(2, 2)); // with carry } public int getSum(int a, int b) { if(b == 0){ // complete the operation when there is no carry return a; } int sum, carry; sum = a^b; // step-1 sum carry = (a&b)<<1; // step-2 sum return getSum(sum, carry); } } ############ class Solution { public int getSum(int a, int b) { return b == 0 ? a : getSum(a ^ b, (a & b) << 1); } }
-
// OJ: https://leetcode.com/problems/sum-of-two-integers/ // Time: O(1) // Space: O(1) class Solution { public: int getSum(int a, int b) { int carry = 0, ans = 0; for (int i = 0; i < 32; ++i) { int x = (a >> i & 1), y = (b >> i & 1); if (carry) { if (x == y) { ans |= 1 << i; if (!x & !y) carry = 0; } } else { if (x != y) ans |= 1 << i; if (x & y) carry = 1; } } return ans; } };
-
''' 0x80000000 Taking the binary of 0x80000000 we get: 1000 0000 0000 0000 0000 0000 0000 0000 equivalent decimal value is 2,147,483,648(1's complement conversion) https://stackoverflow.com/questions/18813875/how-is-0x80000000-equated-to-2147483648-in-java 0xffffffff Taking the binary of 0xffffffff we get: 1111 1111 1111 1111 1111 1111 1111 1111 No sign bit in python 0xFFFFFFFF masking to detect int32 overflow x & 0xFFFFFFFF == x ===> will return True if x doesn't oveflow and x is larger than 0. https://stackoverflow.com/questions/36819849/detect-int32-overflow-using-0xffffffff-masking-in-python >>> bin(0x80000000) '0b10000000000000000000000000000000' >>> bin(0xffffffff) '0b11111111111111111111111111111111' >>> 0x80000000 & 0xffffffff 2147483648 >>> 0x80000000 ^ 0xffffffff 2147483647 ''' ''' >>> 1^1 0 >>> 0^0 0 >>> 1^0 1 >>> 0^1 1 ''' class Solution: def getSum(self, a: int, b: int) -> int: mask = 0xFFFFFFFF kMax = 0x80000000 # the result of each step is passed recursively to the getSum function # until there is no carry (b == 0) # at that point, the function returns the final sum. while b: a, b = (a ^ b) & mask, ((a & b) << 1) & mask return a if a < kMax else ~(a ^ mask) class Solution: # no mast, no overflow consideration def getSum(a: int, b: int) -> int: if b == 0: return a sum = a ^ b # Step 1: sum without carry carry = (a & b) << 1 # Step 2: calculate carry return getSum(sum, carry) ############ class Solution(object): def getSum(self, num1, num2): """ :type a: int :type b: int :rtype: int """ ans = 0 mask = 0x01 carry = 0 for i in range(0, 32): a = num1 & mask b = num2 & mask c = carry carry = 0 if a ^ b != 0: if c == 1: carry = 1 else: ans |= mask else: if a & mask > 0: carry = 1 if c == 1: ans |= mask mask = mask << 1 if ans > 0x7fffffff: return ans - 0xffffffff - 1 return ans
-
func getSum(a int, b int) int { for b != 0 { s := a ^ b b = (a & b) << 1 a = s } return a }