Welcome to Subscribe On Youtube
367. Valid Perfect Square
Description
Given a positive integer num, return true
if num
is a perfect square or false
otherwise.
A perfect square is an integer that is the square of an integer. In other words, it is the product of some integer with itself.
You must not use any built-in library function, such as sqrt
.
Example 1:
Input: num = 16 Output: true Explanation: We return true because 4 * 4 = 16 and 4 is an integer.
Example 2:
Input: num = 14 Output: false Explanation: We return false because 3.742 * 3.742 = 14 and 3.742 is not an integer.
Constraints:
1 <= num <= 231 - 1
Solutions
Solution 1: Binary search
Solution 2: Math trick
This is a math problem:
1 = 1
4 = 1 + 3
9 = 1 + 3 + 5
16 = 1 + 3 + 5 + 7
25 = 1 + 3 + 5 + 7 + 9
36 = 1 + 3 + 5 + 7 + 9 + 11
....
so 1+3+...+(2n-1) = (2n-1 + 1)n/2 = n²
-
class Solution { public boolean isPerfectSquare(int num) { long left = 1, right = num; while (left < right) { long mid = (left + right) >>> 1; if (mid * mid >= num) { right = mid; } else { left = mid + 1; } } return left * left == num; } }
-
class Solution { public: bool isPerfectSquare(int num) { long left = 1, right = num; while (left < right) { long mid = left + right >> 1; if (mid * mid >= num) right = mid; else left = mid + 1; } return left * left == num; } };
-
class Solution: def isPerfectSquare(self, num: int) -> bool: left, right = 1, num while left < right: mid = (left + right) >> 1 if mid * mid >= num: right = mid else: left = mid + 1 return left * left == num
-
func isPerfectSquare(num int) bool { left, right := 1, num for left < right { mid := (left + right) >> 1 if mid*mid >= num { right = mid } else { left = mid + 1 } } return left*left == num }
-
function isPerfectSquare(num: number): boolean { let left = 1; let right = num >> 1; while (left < right) { const mid = (left + right) >>> 1; if (mid * mid < num) { left = mid + 1; } else { right = mid; } } return left * left === num; }
-
use std::cmp::Ordering; impl Solution { pub fn is_perfect_square(num: i32) -> bool { let num: i64 = num as i64; let mut left = 1; let mut right = num >> 1; while left < right { let mid = left + (right - left) / 2; match (mid * mid).cmp(&num) { Ordering::Less => { left = mid + 1; } Ordering::Greater => { right = mid - 1; } Ordering::Equal => { return true; } } } left * left == num } }