Welcome to Subscribe On Youtube

335. Self Crossing

Description

You are given an array of integers distance.

You start at the point (0, 0) on an X-Y plane, and you move distance[0] meters to the north, then distance[1] meters to the west, distance[2] meters to the south, distance[3] meters to the east, and so on. In other words, after each move, your direction changes counter-clockwise.

Return true if your path crosses itself or false if it does not.

 

Example 1:

Input: distance = [2,1,1,2]
Output: true
Explanation: The path crosses itself at the point (0, 1).

Example 2:

Input: distance = [1,2,3,4]
Output: false
Explanation: The path does not cross itself at any point.

Example 3:

Input: distance = [1,1,1,2,1]
Output: true
Explanation: The path crosses itself at the point (0, 0).

 

Constraints:

  • 1 <= distance.length <= 105
  • 1 <= distance[i] <= 105

Solutions

                i-2
    case 1 : i-1┌─┐
                └─┼─>i
                 i-3

                   i-2
    case 2 : i-1 ┌────┐
                 └─══>┘i-3
                 i  i-4

    case 3 :    i-4
               ┌──┐
               │i<┼─┐
            i-3│ i-5│i-1
               └────┘
                i-2
  • class Solution {
        public boolean isSelfCrossing(int[] distance) {
            int[] d = distance;
            for (int i = 3; i < d.length; ++i) {
                if (d[i] >= d[i - 2] && d[i - 1] <= d[i - 3]) {
                    return true;
                }
                if (i >= 4 && d[i - 1] == d[i - 3] && d[i] + d[i - 4] >= d[i - 2]) {
                    return true;
                }
                if (i >= 5 && d[i - 2] >= d[i - 4] && d[i - 1] <= d[i - 3]
                    && d[i] >= d[i - 2] - d[i - 4] && d[i - 1] + d[i - 5] >= d[i - 3]) {
                    return true;
                }
            }
            return false;
        }
    }
    
  • class Solution {
    public:
        bool isSelfCrossing(vector<int>& distance) {
            vector<int> d = distance;
            for (int i = 3; i < d.size(); ++i) {
                if (d[i] >= d[i - 2] && d[i - 1] <= d[i - 3]) return true;
                if (i >= 4 && d[i - 1] == d[i - 3] && d[i] + d[i - 4] >= d[i - 2]) return true;
                if (i >= 5 && d[i - 2] >= d[i - 4] && d[i - 1] <= d[i - 3] && d[i] >= d[i - 2] - d[i - 4] && d[i - 1] + d[i - 5] >= d[i - 3]) return true;
            }
            return false;
        }
    };
    
  • class Solution:
        def isSelfCrossing(self, distance: List[int]) -> bool:
            d = distance
            for i in range(3, len(d)):
                if d[i] >= d[i - 2] and d[i - 1] <= d[i - 3]:
                    return True
                if i >= 4 and d[i - 1] == d[i - 3] and d[i] + d[i - 4] >= d[i - 2]:
                    return True
                if (
                    i >= 5
                    and d[i - 2] >= d[i - 4]
                    and d[i - 1] <= d[i - 3]
                    and d[i] >= d[i - 2] - d[i - 4]
                    and d[i - 1] + d[i - 5] >= d[i - 3]
                ):
                    return True
            return False
    
    
  • func isSelfCrossing(distance []int) bool {
    	d := distance
    	for i := 3; i < len(d); i++ {
    		if d[i] >= d[i-2] && d[i-1] <= d[i-3] {
    			return true
    		}
    		if i >= 4 && d[i-1] == d[i-3] && d[i]+d[i-4] >= d[i-2] {
    			return true
    		}
    		if i >= 5 && d[i-2] >= d[i-4] && d[i-1] <= d[i-3] && d[i] >= d[i-2]-d[i-4] && d[i-1]+d[i-5] >= d[i-3] {
    			return true
    		}
    	}
    	return false
    }
    
  • public class Solution {
        public bool IsSelfCrossing(int[] x) {
            for (var i = 3; i < x.Length; ++i)
            {
                if (x[i] >= x[i - 2] && x[i - 1] <= x[i - 3]) return true;
                if (i > 3 && x[i] + x[i - 4] >= x[i - 2])
                {
                    if (x[i - 1] == x[i - 3]) return true;
                    if (i > 4 && x[i - 2] >= x[i - 4] && x[i - 1] <= x[i - 3] && x[i - 1] + x[i - 5] >= x[i - 3]) return true;
                }
            }
            return false;
        }
    }
    

All Problems

All Solutions