Welcome to Subscribe On Youtube
236. Lowest Common Ancestor of a Binary Tree
Description
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p
and q
as the lowest node in T
that has both p
and q
as descendants (where we allow a node to be a descendant of itself).”
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 Output: 3 Explanation: The LCA of nodes 5 and 1 is 3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 Output: 5 Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [1,2], p = 1, q = 2 Output: 1
Constraints:
- The number of nodes in the tree is in the range
[2, 105]
. -109 <= Node.val <= 109
- All
Node.val
are unique. p != q
p
andq
will exist in the tree.
Solutions
The LCA of two nodes p
and q
in a binary tree is the lowest node in T
that has both p
and q
as descendants (where we allow a node to be a descendant of itself).
The idea behind the solution is to recursively search for the nodes p
and q
in the left and right subtrees. There are a few cases to consider:
- If either
p
orq
matches the current node, this node must be part of the LCA. - If
p
andq
are found in different subtrees of a node, this node is their LCA. -
If
p
andq
are found in the same subtree, continue searching in that subtree for the LCA. -
Base Case: If the current node is
None
, or if it matches eitherp
orq
, return the current node. This means we have found one of the nodes we’re looking for, or we’ve reached the end of a path without finding either, in which case we returnNone
. -
Recursive Search: The function recursively searches the left and right subtrees for
p
andq
. - Identifying LCA:
- If both
left
andright
search calls return non-null values, it means we’ve foundp
andq
in different subtrees of the current node. Hence, the current node is the LCA. - If only one of the search calls returns a non-null value, it means both
p
andq
are located in the same subtree, or only one of the nodes was found. Return the non-null result.
- If both
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if (root == null || root == p || root == q) return root; TreeNode left = lowestCommonAncestor(root.left, p, q); TreeNode right = lowestCommonAncestor(root.right, p, q); if (left == null) return right; if (right == null) return left; return root; } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (!root || root == p || root == q) return root; TreeNode* left = lowestCommonAncestor(root->left, p, q); TreeNode* right = lowestCommonAncestor(root->right, p, q); if (left && right) return root; return left ? left : right; } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def lowestCommonAncestor( self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode' ) -> 'TreeNode': if root is None or root == p or root == q: return root left = self.lowestCommonAncestor(root.left, p, q) right = self.lowestCommonAncestor(root.right, p, q) return root if left and right else (left or right) ############ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def lowestCommonAncestor(self, root, p, q): """ :type root: TreeNode :type p: TreeNode :type q: TreeNode :rtype: TreeNode """ if not root: return root left = self.lowestCommonAncestor(root.left, p, q) right = self.lowestCommonAncestor(root.right, p, q) if left and right: return root if root == p or root == q: return root if left: return left if right: return right return None
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode { if root == nil || root == p || root == q { return root } left := lowestCommonAncestor(root.Left, p, q) right := lowestCommonAncestor(root.Right, p, q) if left == nil { return right } if right == nil { return left } return root }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function lowestCommonAncestor( root: TreeNode | null, p: TreeNode | null, q: TreeNode | null, ): TreeNode | null { const find = (root: TreeNode | null) => { if (root == null || root == p || root == q) { return root; } const left = find(root.left); const right = find(root.right); if (left != null && right != null) { return root; } if (left != null) { return left; } return right; }; return find(root); }
-
/** * Definition for a binary tree node. * function TreeNode(val) { * this.val = val; * this.left = this.right = null; * } */ /** * @param {TreeNode} root * @param {TreeNode} p * @param {TreeNode} q * @return {TreeNode} */ var lowestCommonAncestor = function (root, p, q) { if (!root || root == p || root == q) return root; const left = lowestCommonAncestor(root.left, p, q); const right = lowestCommonAncestor(root.right, p, q); if (!left) return right; if (!right) return left; return root; };
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; impl Solution { fn find( root: &Option<Rc<RefCell<TreeNode>>>, p: &Option<Rc<RefCell<TreeNode>>>, q: &Option<Rc<RefCell<TreeNode>>> ) -> Option<Rc<RefCell<TreeNode>>> { if root.is_none() || root == p || root == q { return root.clone(); } let node = root.as_ref().unwrap().borrow(); let left = Self::find(&node.left, p, q); let right = Self::find(&node.right, p, q); match (left.is_some(), right.is_some()) { (true, false) => left, (false, true) => right, (false, false) => None, (true, true) => root.clone(), } } pub fn lowest_common_ancestor( root: Option<Rc<RefCell<TreeNode>>>, p: Option<Rc<RefCell<TreeNode>>>, q: Option<Rc<RefCell<TreeNode>>> ) -> Option<Rc<RefCell<TreeNode>>> { Self::find(&root, &p, &q) } }