Welcome to Subscribe On Youtube

236. Lowest Common Ancestor of a Binary Tree

Description

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

 

Example 1:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.

Example 2:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.

Example 3:

Input: root = [1,2], p = 1, q = 2
Output: 1

 

Constraints:

  • The number of nodes in the tree is in the range [2, 105].
  • -109 <= Node.val <= 109
  • All Node.val are unique.
  • p != q
  • p and q will exist in the tree.

Solutions

The LCA of two nodes p and q in a binary tree is the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).

The idea behind the solution is to recursively search for the nodes p and q in the left and right subtrees. There are a few cases to consider:

  • If either p or q matches the current node, this node must be part of the LCA.
  • If p and q are found in different subtrees of a node, this node is their LCA.
  • If p and q are found in the same subtree, continue searching in that subtree for the LCA.

  • Base Case: If the current node is None, or if it matches either p or q, return the current node. This means we have found one of the nodes we’re looking for, or we’ve reached the end of a path without finding either, in which case we return None.

  • Recursive Search: The function recursively searches the left and right subtrees for p and q.

  • Identifying LCA:
    • If both left and right search calls return non-null values, it means we’ve found p and q in different subtrees of the current node. Hence, the current node is the LCA.
    • If only one of the search calls returns a non-null value, it means both p and q are located in the same subtree, or only one of the nodes was found. Return the non-null result.
  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    class Solution {
        public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
            if (root == null || root == p || root == q) return root;
            TreeNode left = lowestCommonAncestor(root.left, p, q);
            TreeNode right = lowestCommonAncestor(root.right, p, q);
            if (left == null) return right;
            if (right == null) return left;
            return root;
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
            if (!root || root == p || root == q) return root;
            TreeNode* left = lowestCommonAncestor(root->left, p, q);
            TreeNode* right = lowestCommonAncestor(root->right, p, q);
            if (left && right) return root;
            return left ? left : right;
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class Solution:
        def lowestCommonAncestor(
            self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode'
        ) -> 'TreeNode':
            if root is None or root == p or root == q:
                return root
            left = self.lowestCommonAncestor(root.left, p, q)
            right = self.lowestCommonAncestor(root.right, p, q)
            return root if left and right else (left or right)
    
    ############
    
    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class Solution(object):
      def lowestCommonAncestor(self, root, p, q):
        """
        :type root: TreeNode
        :type p: TreeNode
        :type q: TreeNode
        :rtype: TreeNode
        """
    
        if not root:
          return root
    
        left = self.lowestCommonAncestor(root.left, p, q)
        right = self.lowestCommonAncestor(root.right, p, q)
    
        if left and right:
          return root
    
        if root == p or root == q:
          return root
    
        if left:
          return left
        if right:
          return right
        return None
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode {
    	if root == nil || root == p || root == q {
    		return root
    	}
    	left := lowestCommonAncestor(root.Left, p, q)
    	right := lowestCommonAncestor(root.Right, p, q)
    	if left == nil {
    		return right
    	}
    	if right == nil {
    		return left
    	}
    	return root
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function lowestCommonAncestor(
        root: TreeNode | null,
        p: TreeNode | null,
        q: TreeNode | null,
    ): TreeNode | null {
        const find = (root: TreeNode | null) => {
            if (root == null || root == p || root == q) {
                return root;
            }
            const left = find(root.left);
            const right = find(root.right);
            if (left != null && right != null) {
                return root;
            }
            if (left != null) {
                return left;
            }
            return right;
        };
        return find(root);
    }
    
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val) {
     *     this.val = val;
     *     this.left = this.right = null;
     * }
     */
    /**
     * @param {TreeNode} root
     * @param {TreeNode} p
     * @param {TreeNode} q
     * @return {TreeNode}
     */
    var lowestCommonAncestor = function (root, p, q) {
        if (!root || root == p || root == q) return root;
        const left = lowestCommonAncestor(root.left, p, q);
        const right = lowestCommonAncestor(root.right, p, q);
        if (!left) return right;
        if (!right) return left;
        return root;
    };
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        fn find(
            root: &Option<Rc<RefCell<TreeNode>>>,
            p: &Option<Rc<RefCell<TreeNode>>>,
            q: &Option<Rc<RefCell<TreeNode>>>
        ) -> Option<Rc<RefCell<TreeNode>>> {
            if root.is_none() || root == p || root == q {
                return root.clone();
            }
            let node = root.as_ref().unwrap().borrow();
            let left = Self::find(&node.left, p, q);
            let right = Self::find(&node.right, p, q);
            match (left.is_some(), right.is_some()) {
                (true, false) => left,
                (false, true) => right,
                (false, false) => None,
                (true, true) => root.clone(),
            }
        }
    
        pub fn lowest_common_ancestor(
            root: Option<Rc<RefCell<TreeNode>>>,
            p: Option<Rc<RefCell<TreeNode>>>,
            q: Option<Rc<RefCell<TreeNode>>>
        ) -> Option<Rc<RefCell<TreeNode>>> {
            Self::find(&root, &p, &q)
        }
    }
    
    

All Problems

All Solutions