Welcome to Subscribe On Youtube

223. Rectangle Area

Description

Given the coordinates of two rectilinear rectangles in a 2D plane, return the total area covered by the two rectangles.

The first rectangle is defined by its bottom-left corner (ax1, ay1) and its top-right corner (ax2, ay2).

The second rectangle is defined by its bottom-left corner (bx1, by1) and its top-right corner (bx2, by2).

 

Example 1:

Rectangle Area

Input: ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2
Output: 45

Example 2:

Input: ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2
Output: 16

 

Constraints:

  • -104 <= ax1 <= ax2 <= 104
  • -104 <= ay1 <= ay2 <= 104
  • -104 <= bx1 <= bx2 <= 104
  • -104 <= by1 <= by2 <= 104

Solutions

Solution 1: Calculate Overlapping Area

First, we calculate the area of the two rectangles separately, denoted as $a$ and $b$. Then we calculate the overlapping width $width$ and height $height$. The overlapping area is $max(width, 0) \times max(height, 0)$. Finally, we subtract the overlapping area from $a$ and $b$.

The time complexity is $O(1)$, and the space complexity is $O(1)$.

  • class Solution {
        public int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
            int a = (ax2 - ax1) * (ay2 - ay1);
            int b = (bx2 - bx1) * (by2 - by1);
            int width = Math.min(ax2, bx2) - Math.max(ax1, bx1);
            int height = Math.min(ay2, by2) - Math.max(ay1, by1);
            return a + b - Math.max(height, 0) * Math.max(width, 0);
        }
    }
    
    
  • class Solution {
    public:
        int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
            int a = (ax2 - ax1) * (ay2 - ay1);
            int b = (bx2 - bx1) * (by2 - by1);
            int width = min(ax2, bx2) - max(ax1, bx1);
            int height = min(ay2, by2) - max(ay1, by1);
            return a + b - max(height, 0) * max(width, 0);
        }
    };
    
  • class Solution:
        def computeArea(
            self,
            ax1: int,
            ay1: int,
            ax2: int,
            ay2: int,
            bx1: int,
            by1: int,
            bx2: int,
            by2: int,
        ) -> int:
            a = (ax2 - ax1) * (ay2 - ay1)
            b = (bx2 - bx1) * (by2 - by1)
            width = min(ax2, bx2) - max(ax1, bx1)
            height = min(ay2, by2) - max(ay1, by1)
            return a + b - max(height, 0) * max(width, 0)
    
    ############
    
    class Solution(object):
      def computeArea(self, A, B, C, D, E, F, G, H):
        """
        :type A: int
        :type B: int
        :type C: int
        :type D: int
        :type E: int
        :type F: int
        :type G: int
        :type H: int
        :rtype: int
        """
        area = (C - A) * (D - B) + (G - E) * (H - F)
        overlap = max(min(C, G) - max(A, E), 0) * max(min(D, H) - max(B, F), 0)
        return area - overlap
    
    
    
  • func computeArea(ax1 int, ay1 int, ax2 int, ay2 int, bx1 int, by1 int, bx2 int, by2 int) int {
    	a := (ax2 - ax1) * (ay2 - ay1)
    	b := (bx2 - bx1) * (by2 - by1)
    	width := min(ax2, bx2) - max(ax1, bx1)
    	height := min(ay2, by2) - max(ay1, by1)
    	return a + b - max(height, 0)*max(width, 0)
    }
    
  • function computeArea(
        ax1: number,
        ay1: number,
        ax2: number,
        ay2: number,
        bx1: number,
        by1: number,
        bx2: number,
        by2: number,
    ): number {
        const a = (ax2 - ax1) * (ay2 - ay1);
        const b = (bx2 - bx1) * (by2 - by1);
        const width = Math.min(ax2, bx2) - Math.max(ax1, bx1);
        const height = Math.min(ay2, by2) - Math.max(ay1, by1);
        return a + b - Math.max(width, 0) * Math.max(height, 0);
    }
    
    
  • public class Solution {
        public int ComputeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
            int a = (ax2 - ax1) * (ay2 - ay1);
            int b = (bx2 - bx1) * (by2 - by1);
            int width = Math.Min(ax2, bx2) - Math.Max(ax1, bx1);
            int height = Math.Min(ay2, by2) - Math.Max(ay1, by1);
            return a + b - Math.Max(height, 0) * Math.Max(width, 0);
        }
    }
    

All Problems

All Solutions