Welcome to Subscribe On Youtube

222. Count Complete Tree Nodes

Description

Given the root of a complete binary tree, return the number of the nodes in the tree.

According to Wikipedia, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.

Design an algorithm that runs in less than O(n) time complexity.

 

Example 1:

Input: root = [1,2,3,4,5,6]
Output: 6

Example 2:

Input: root = []
Output: 0

Example 3:

Input: root = [1]
Output: 1

 

Constraints:

  • The number of nodes in the tree is in the range [0, 5 * 104].
  • 0 <= Node.val <= 5 * 104
  • The tree is guaranteed to be complete.

Solutions

Solution 1: Recursion

We recursively traverse the entire tree and count the number of nodes.

The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the number of nodes in the tree.

Solution 2: Binary Search

For this problem, we can also take advantage of the characteristics of a complete binary tree to design a faster algorithm.

Characteristics of a complete binary tree: leaf nodes can only appear on the bottom and second-to-bottom layers, and the leaf nodes on the bottom layer are concentrated on the left side of the tree. It should be noted that a full binary tree is definitely a complete binary tree, but a complete binary tree is not necessarily a full binary tree.

If the number of layers in a full binary tree is $h$, then the total number of nodes is $2^h - 1$.

We first count the heights of the left and right subtrees of $root$, denoted as $left$ and $right$.

  1. If $left = right$, it means that the left subtree is a full binary tree, so the total number of nodes in the left subtree is $2^{left} - 1$. Plus the $root$ node, it is $2^{left}$. Then we recursively count the right subtree.
  2. If $left > right$, it means that the right subtree is a full binary tree, so the total number of nodes in the right subtree is $2^{right} - 1$. Plus the $root$ node, it is $2^{right}$. Then we recursively count the left subtree.

The time complexity is $O(\log^2 n)$. (square of tree-height)

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public int countNodes(TreeNode root) {
            if (root == null) {
                return 0;
            }
            int left = depth(root.left);
            int right = depth(root.right);
            if (left == right) {
                return (1 << left) + countNodes(root.right);
            }
            return (1 << right) + countNodes(root.left);
        }
    
        private int depth(TreeNode root) {
            int d = 0;
            for (; root != null; root = root.left) {
                ++d;
            }
            return d;
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        int countNodes(TreeNode* root) {
            if (!root) {
                return 0;
            }
            int left = depth(root->left);
            int right = depth(root->right);
            if (left == right) {
                return (1 << left) + countNodes(root->right);
            }
            return (1 << right) + countNodes(root->left);
        }
    
        int depth(TreeNode* root) {
            int d = 0;
            for (; root; root = root->left) {
                ++d;
            }
            return d;
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def countNodes(self, root: Optional[TreeNode]) -> int:
            def depth(root):
                d = 0
                while root:
                    d += 1
                    root = root.left
                return d
    
            if root is None:
                return 0
            left, right = depth(root.left), depth(root.right)
            if left == right:
                # left child subtree: (1<<left)-1
                # plus root: +1
                # so total except right subtree: (1<<left)
                return (1 << left) + self.countNodes(root.right)
            else: # left = right+1
                return (1 << right) + self.countNodes(root.left)
    
    ############
    
    '''
    >>> 2 ** 3
    8
    >>> 3 ** 2
    9
    '''
    
    
    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class Solution(object):
      def getHeight(self, root):
        height = 0
        while root:
          height += 1
          root = root.left
        return height
    
      def countNodes(self, root):
        count = 0
        while root:
          l, r = map(self.getHeight, (root.left, root.right))
          if l == r:
            count += 2 ** l
            root = root.right
          else:
            count += 2 ** r
            root = root.left
        return count
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func countNodes(root *TreeNode) int {
    	if root == nil {
    		return 0
    	}
    	left, right := depth(root.Left), depth(root.Right)
    	if left == right {
    		return (1 << left) + countNodes(root.Right)
    	}
    	return (1 << right) + countNodes(root.Left)
    }
    
    func depth(root *TreeNode) (d int) {
    	for ; root != nil; root = root.Left {
    		d++
    	}
    	return
    }
    
  • /**
     * Definition for a binary tree node.
     * function TreeNode(val, left, right) {
     *     this.val = (val===undefined ? 0 : val)
     *     this.left = (left===undefined ? null : left)
     *     this.right = (right===undefined ? null : right)
     * }
     */
    /**
     * @param {TreeNode} root
     * @return {number}
     */
    var countNodes = function (root) {
        const depth = root => {
            let d = 0;
            for (; root; root = root.left) {
                ++d;
            }
            return d;
        };
        if (!root) {
            return 0;
        }
        const left = depth(root.left);
        const right = depth(root.right);
        if (left == right) {
            return (1 << left) + countNodes(root.right);
        }
        return (1 << right) + countNodes(root.left);
    };
    
    
  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     public int val;
     *     public TreeNode left;
     *     public TreeNode right;
     *     public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    public class Solution {
        public int CountNodes(TreeNode root) {
            if (root == null) {
                return 0;
            }
            int left = depth(root.left);
            int right = depth(root.right);
            if (left == right) {
                return (1 << left) + CountNodes(root.right);
            }
            return (1 << right) + CountNodes(root.left);
        }
    
        private int depth(TreeNode root) {
            int d = 0;
            for (; root != null; root = root.left) {
                ++d;
            }
            return d;
        }
    }
    
  • use std::cell::RefCell;
    use std::rc::Rc;
    
    impl Solution {
        pub fn count_nodes(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
            if let Some(node) = root {
                let node = node.borrow();
                let left = Self::depth(&node.left);
                let right = Self::depth(&node.right);
                if left == right {
                    Self::count_nodes(node.right.clone()) + (1 << left)
                } else {
                    Self::count_nodes(node.left.clone()) + (1 << right)
                }
            } else {
                0
            }
        }
    
        fn depth(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 {
            if let Some(node) = root { Self::depth(&node.borrow().left) + 1 } else { 0 }
        }
    }
    
    

All Problems

All Solutions